
Note prepared By - Er Pramod kumar behera

MAUG,

GEOTECHNICAL ENGINEERING (12 marks)

1. ORIGIN OF SOILS

Soil is a naturally occurring unconsolidated earth material present above the bed rock. - Terzaghy.

Karl Terzaghy - Father of Soil Mechanics.

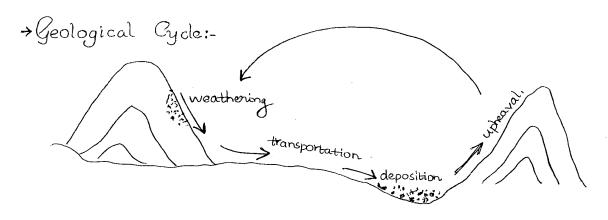
Origin of soils is due to

Weathering of rocks.
(disintegration)
(inorganic soil)

Eg: gravel, 8and, 8ome Eg: gravel, 8and, 8ome Decomposition of organic matter (organic soils' or cumulose, soils)

Eg: Humus, muck, peat

-> Weathering of Rocks.


Physical weathering

- due to physical effects

- a) temperature change
- b) Abrasion. (grinding action of flowing water & wind)
- c) Splitting action due to ice, rain, penetration of plant roots
- produces soils like gravel, sand, non plastic sitt.

Chemical weathering

- due to chemical actions
 - a) oscidation
 - b) Carbonation
 - c) Hydration
 - disolution
 - e) Hydrolysis.
- produces soils like clay, plastic silt

<u>Pedogenesis</u>: It is a process of formation of soil.

+ Transportation of Soil:

It is due to -

- a) Wind Aeolian Soil: transported & deposited by wind.
- b) Water Alluvial Soil: transported by water & deposited along
- c) Glacier Glacier deposit: transported by glacier
- d) Gravity Colluvial Soil: transported & deposited by Granity.

Lacustrine Soil: - transported by water & deposited in lakes
Marine Soil: - transported by water & deposited in sea

* Classification of Soils.

- a) Residual Soils: soil which remains at or near the (Sedentary Soil). parent rock.
- b) Transported Soil: transported away from parent rock
- → Forces acting on the Soil Particles:
 - i) Gravitational Force or Body Force.
 - (ii) Surface force

Body Force

(i) It is proportional to mass

(ii) Eg: weight.

(iii) It is predominant in gravel & & and (iii) It is predominant in clay.

(Clay behaviour is mainly worknowled by surface force)

In the case of sitty soil both body force and swiface force ? are equally important. - Popular Field names of Soils. 1. Black Cotton soil (BC Soil):- a residual clayey soil. - highly plastic. -oschibits high swelling 8 Shrinkage due to presence of " Montmorillonite" clay minero - parent rock is Basalt or tray 2. Loam: - a mix of sand, silt & clay 3. Moorum: - a gravel mixed with red clay 4. Bentonite: - a de composed volcanic ash. - a clayey soil, highly plastic, highly water absorb - bentonite sluvy is called "Drilling Mud" 5. Varved Clay: - contains alternate thin layers of sitt 8 clay

- lacustrine deposits.

- weakly comented by acoz particles.

- particle size is same.

9. Muck: - contains fine morganic particles with decomposes

(amorphous x crystalline)

- contains silt sized particles

- amorphous in nature.

6. Loess: - Aeolian deposit.

7. Sand dunes: - Aeolian deposit.

8. Humus: - half decomposed organic soil.

organic material.

- fibrous in nature.

10. Peat: - highly decomposed organic matter.

dark brown to black colour

- black in colows.

11. Fill: - a manually deposited soil (a man made deposit)

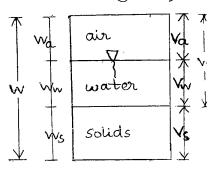
2. DEFINITIONS & PROPERTIES OF SOIL

* Partially saturated soil: solids + water + air (3 phase syste

July saturated soil: solids + water. (2 phase system)

Dry soil: Solids + air

* Frozen soil: solids + water + ice + air. (4 phase system)


Vs -> volume of solids.

V -> volume of soil.

W -> volume of voids.

 $V_v = V_w + V_a$.

 $V = V_S + V_W + V_a$.

Phase Diagram OR Block Diagram

* Void Ratio, e

$$e = \frac{V_V}{V_S}$$

Range: - more than zero, it can have any value (no limit,

-For coanse grained soil, e < 1 generally.

-For fine grained soil, e>1 generally

- The 'e' of FG1 soil is generally more than the of a coarse grained soil.

Cubical array (loosest state)

Cmax = 0.91

Diagonal array (densest state)

emax = 0.35

* Specific Gravity of Soil Solids, 6
$$G = \frac{\chi_s}{\chi_w}; \quad \chi_w \rightarrow \text{distilled water}$$
(pure water)

Also called 'Inne Specific gravity of <u>Soil</u>'

For soils, G: 2.60 — 2.85 generally,

(inonganic)

* Mars Specific Gravity of Soil. (or) Bulk Sp. Gr. of soil (or) Apparent Specific Gravity of soil, 6m.

For a dry soil,
$$G_m = \frac{\gamma_d}{\gamma_w}$$

For a fully saturated soil, $Gm = \frac{\gamma}{\gamma_w}$ For a fully saturated soil, $Gm = \frac{\gamma_{sat}}{\gamma_w}$

For coment:-

True 8p. gravity,
$$G = 3.15$$

Apparent 8p. gravity, $G_m = 1.44$

For coment,
$$% S = 3150 \text{ kgF/m}^3$$
. $% S = 3150 \text{ kgF/m}^3$.

Important Relationships:

1.
$$e = \frac{\omega G}{Sr}$$

$$3. \quad \forall sat = \forall \omega \left(\frac{G+eSr}{1+e}\right)$$

$$4. \quad \forall d = \frac{\forall \omega G}{1+e}$$

$$5. \quad \forall d = \frac{\forall \omega G}{1+\omega}$$

$$6. \quad \forall d = \frac{\forall \omega G}{1+\omega}$$

$$1+\omega G$$

* Saturated unit weight of Soil, Vsat.

It is the bulk unit weight of soil in a saturated

condition. $\Rightarrow 8sat > 8$

For July saturated soil, Esat use &

* Dry unit weight of Soil, Vd.

$$V_{d} = \frac{V_{s}}{V}$$

It can be used irrespective of saturation level of soil.

* Unit weight of Solids, Vs

$$\gamma_s = \frac{w_s}{V_s}$$

* Submerged Unit Weight of Soil, Ysub or Y'

It is the submerged wt. of soil per unit

volume of soil.

 \bigcirc

| Vsat V-gravity force | | Vn 1-buoyant force.]

Submerged weight of Svil is based on Archimedés Principle.

Iw = unit weight of water

 $= 1 g/cc = 1 ton/m^3 = 1000 kgf/m^3$.

= 9.81 kN/m³ \approx 10 kN/m³.

Ys > Vsat > Ybulk > Ydry > Y'

For a given soil, Is remains a constant

* Porosity, n (also called 'Percentage voids').

$$n = \frac{V_V}{V} \times 100$$

Range: $0 < n < 100\%$ ($V_V \neq 0$, soil, $: n \neq 0$).

Range:
$$0 < n < 100\%$$
 ($v \neq 0$ soil, $n \neq 0$).
$$n = \frac{e}{1 + e}$$

* Degree of Saturation, Sr

$$S_r = \frac{V_w}{V_v} \times 100$$

For a dry soil,
$$Sr = \frac{0}{V_V} \times 100 = 0$$
 ($Vw = 0$)

For a saturated soil,
$$Sr = \frac{V_V}{V_V} \times 100 = 100 (V_W = V_V)$$

Range: 0 ≤ Sr ≤ 100 %

* Air content, ac

$$\alpha_c = \frac{V_a}{V_V}$$

For a saturated soil,
$$a_c = \frac{0}{V_v} = 0$$
 ($V_a = 0$).

For a dry soil,
$$a_c = \frac{v_v}{v_v} = 1$$
. $(v_a = v_v)$.

Range: 0 ≤ ac ≤ 1

* % air voids, na

$$n_a = \frac{V_a}{V} \times 100$$

For a saturated soil,
$$(V_a = 0)$$
, $n_a = 0$

For a dry soil,
$$n_a = n$$
 $(v_a = v_v)$.

Ronge: 0 < na < n.

$$a_{c} + S_{r} = \frac{Va}{Vv} + \frac{Vw}{Vv}$$

$$= \frac{Va + Vw}{Vv} = \frac{Vv}{Vv} = 1.$$

$$\therefore a_{c} + S_{r} = 1$$

$$nac = \frac{v_v}{v} \times \frac{v_a}{v_v} = \frac{v_a}{v} = n_a.$$

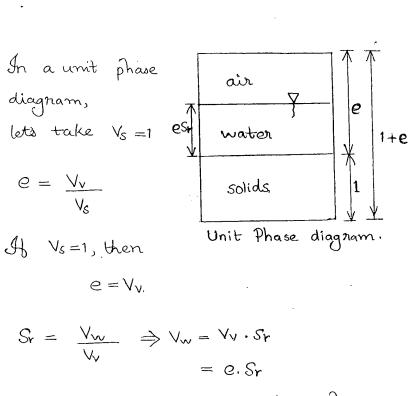
$$\boxed{n.a_c = n_a}$$

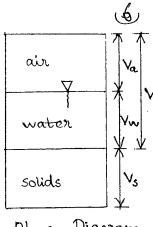
 $W_5 \longrightarrow \text{weight of 80 lids.}$ $W \longrightarrow \text{weight of 80 il.}$ $W = W_5 + W_W \quad (\text{Wa is negligible})$ $W_0 \longrightarrow \text{weight of 80 il in dry condition.} (=W_5).$

* Water Content, w

$$\omega = \frac{W_W}{W_S} \times 100$$

For day soil, $\omega = \frac{0}{W_s} \times 100 = 0$


For a saturated soil, W>0.


(i.e, water content have any value greater than zero Sometimes > 100 %, sometimes < 100%)

* Bulk unit weight of 80il, 8

— it is the total weight of soil per unit volume
of soil.

$$\chi = \frac{\lambda}{M}$$

Phase Diagram

⊙ To derive n & e relationship;

$$n = \frac{V_v}{V} = \frac{e}{1+e}$$

• To derive
$$e = \frac{\omega G_1}{Sr}$$

$$\omega = \frac{Ww}{Ws} = \frac{Vw w}{V_s \cdot v_s} = \frac{eSr}{1.6}$$

$$\Rightarrow e = \frac{wG}{Sr}$$

• To derive
$$Y = V_W \left(\frac{G + eSr}{1 + e} \right)$$

$$\gamma = \frac{v_s + v_w}{v} = \frac{\gamma_s w_s + \gamma_w v_w}{v}$$

$$= \frac{y_s + y_w e.Sr}{1+e.}$$

Before compaction

e1, Yd1, Ws

After compaction

e2, 1d2, Ws

$$\frac{V_2}{V_1} = \frac{1 + e_2}{1 + e_1}$$

$$\gamma_d = \frac{w_s}{v} \Rightarrow \gamma_d \propto \frac{1}{v}$$

$$\frac{V_2}{V_2} = \frac{y_{d_1}}{y_{d_2}}$$

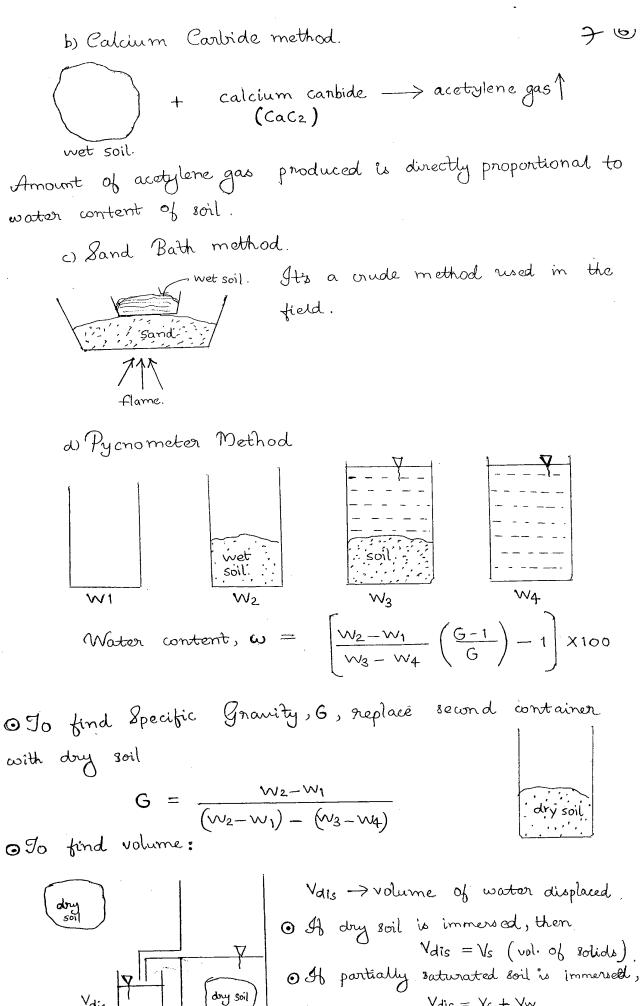
a. Due to compaction, the void natio of a soil reduced from 1 to 0.6. What is the % volume loss.

$$\frac{V_2}{V_1} = \frac{1+0.6}{1+1} = \frac{1.6}{2.}$$

.. vol. reduced to 80%.

vol. reduced by 20% \Rightarrow volume loss is 20%.

* To Find Water Content of Soil:


- a) Overndrying Method. > most accurate method.
- b) Pycnometer Method > can be used only if 'G' is known
- e) Sand bath method + quick field method. (approx. value).
- d) Calcium Carbide method .> quick method.
- e) Tonsion balance method > to find w.c at different depths below G.L

a) Oven Drying method:

$$w \rightarrow \omega t$$
. of wet soil = ws

$$\omega = \frac{w_w}{w_s} \times 100 = \frac{w - w_d}{w_d} \times 100$$

0

0

()

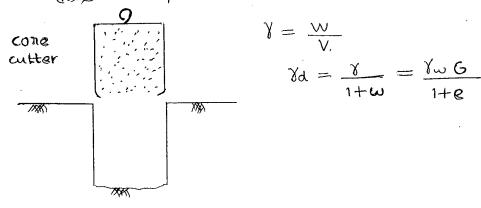
 \bigcirc

 \bigcirc

0

0

Vdis = Vs + Vw


• Partially saturated soil with wasc coating, then

Vdis = total volume of soil = V + vol. of wa

* To determine in-situ & and e

(i) Core Cutter Method -> suitable for clays only (cohesive).

(ii) Sand Replacement method. > suitable for any soil

12th Aug, TUESDAY

P-8.

$$1. \quad \forall a = \frac{\vee}{6}, \ \forall w = \frac{\vee}{3}$$

$$V_{V} = \frac{V}{6} + \frac{V}{3} = \frac{V}{2}$$

$$V_S = V - V_V = \frac{V}{3}$$

$$e = \frac{V_1}{V_S} = \frac{0.5 \, \text{V}}{0.5 \, \text{V}} = \frac{1}{1}$$

2.
$$\gamma_1 = 1.8$$
 g/cc. at $\omega_1 = 5\%$

$$\gamma_2 = 9$$
 at $\omega_2 = 10\%$
(e) remains constant.

$$Y_d = \frac{Y}{1+\omega}$$
 \Rightarrow $Y = Y_d (1+\omega) = \frac{Y_w G (1+\omega)}{1+e}$

$$\frac{1.8}{7} = \frac{1.05}{1:1}$$
(e is constant)

8 (7)

Volume of soil = vol. of samplor.

$$V = 45 cc$$
.

Given Vs = 25 cc.

$$e = \frac{V - V_S}{V_S} = \frac{20}{25} = \frac{0.8}{}$$

Initial wt. of soil = 0.18 kg. Water added = 0.02.

:. Jotal weight, w = 0.2 kg.

Vol. of soil, $v = 10^{-4} \text{ m}^3$. (initial volume assumed to be constant)

$$\gamma = \frac{w}{y} = \frac{0.2}{10^{-4}} = 2000 \text{ kg/m}^3$$

8d = 1600 kg/m3.

$$Vd = \frac{Y}{1+\omega}$$

$$1600 = 2000$$

$$1+\omega$$

 $\omega = 0.25 = \frac{25\%}{}$ (method is valid only if

V nemains const. after adding water)

Initial weight, W = 0.18 kg, $V = 10^{-4} \text{ m}^3$, $Vd = 1600 \text{ kg/m}^3$

$$M = Ms + MM$$

$$\therefore W_{W} = 0.02 \text{ kg}.$$

$$1600 = \frac{\text{Ws}}{10^{-4}} \implies \text{Ws} = 0.16 \text{ kg}, \qquad (\text{water present ini})$$

Water added additionally, = 0.02 kg.

$$WW = 0.02 + 0.02 = 0.04 \text{ kg}$$

Final water content = $\frac{0.04}{0.16} \times 100 = \frac{25\%}{0.16}$

$$W = 34.62 g$$
, $V = 24.66 cm^3$, $Vd = Ws = 20.36 g$

$$G = 2.68$$
 g $e = 9$ $Sr = 9$

$$\omega = \frac{W - Wd}{Wd} \times 100 = 70\%$$

$$e = \frac{\omega G}{S_r} = \frac{0.7 \times 2.68}{S_r} \longrightarrow 0$$

$$\gamma = \frac{W}{V} = \frac{34.62}{26.66} = 1.40 g/cc.$$

$$\gamma = \gamma_{\omega} \left(\frac{G_1 + eS_r}{1 + e} \right) \Rightarrow 1.4 = \frac{1(2.68 + 0.7 \times 2.68)}{1 + e}$$

$$Sr = \frac{0.7 \times 2.68}{2.25} = 83.4\%$$

$$Vd = \frac{Vd}{V} = \frac{20.36}{24.66} = 0.825 g/cc$$

$$Yd = GYw$$
1+e

819.
$$\omega = 18\%$$
, $\chi = 2.05$ g/c., $G_1 = 2.67$.

$$Yd = \frac{GYw}{1+e} = \frac{Y}{1+w}$$

$$\frac{2.67 \times 1}{1+e} = \frac{2.05}{1.18}$$

$$e = 0.54$$

$$e = \frac{\omega G}{8r} \Rightarrow Sr = \frac{0.18 \times 2.67}{0.54} = 89.52\%$$

8.
$$\omega = 39.3\%$$
, $Gm = \frac{Y_{\text{Sat}}}{Y_{\text{W}}} = 1.84$ (Soil is saturated)

$$e = \frac{\omega G}{Sr} = 0.393 G$$

$$Y_{\text{sat}} = \underbrace{v_{\omega}(G + e)}_{1 + e}$$

$$1.84 = \frac{G + 0.398 \, G}{1 + 0.393 \, G} \Rightarrow G = 2.70$$
, $C = 0.393 \, G = \frac{1.08}{1}$

()

()

 \bigcirc

0

 \bigcirc

()

(_)

∪ 3.

Borrow
$$V_2$$
 V_2
 $V_1 = 1.75 \text{ g/cc}$
 $V_1 = 12\%$
 $V_2 = 1000 \text{ m}^3$.

 $V_1 = 9$

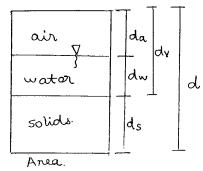
$$V_{d1} = \frac{v_1}{1 + w_1} = \frac{1.75}{1 + 0.12}$$

$$= 1.57.$$

$$V_1 = \frac{v_{d2}}{1.65} \times 1000 = \frac{1056 \text{ m}^3}{1.657}$$

To naise w.c from $w_1 \rightarrow w_2$:

Weight of water to be added = $8d \cdot V(w_2 - w_1)$ $= 1.65 \times 1000 \times 1000 (0.18 - 0.12)$ = 99000 kg = 99 tons


$$\gamma_{bornow} = 1.66$$
 $\gamma_{bornow} = 1.66$ γ_{b

$$\frac{V_2}{V_3} = \frac{7d3}{8d2}$$

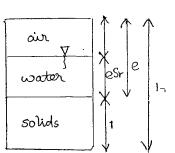
$$V_2 = \frac{1.25}{1.08} \times 100 = 147 \text{ m}^3$$

No: of truck boods = 147 = 24.6 no.5 = 25 no.5

A dw=1m, d=9
Given:
$$e = 0.5$$
, $Sr = 80\%$
 $Sr = \frac{dw}{dv}$
 $dv = \frac{1}{0.8} = 1.25m$

depth of voids, dy = 1.25 m.

$$e = \frac{dv}{ds} \Rightarrow ds = \frac{1.25}{0.5 \times 10^{-3}} = \frac{2.5 \text{ m}}{2.5 \text{ m}}$$


Total depth of soil, d = ds + dv = 3.75 m

OR based on Unit Phase Diagram.

Given, depth of water = 1 m

0.4 m depth of water makes 7.5 m depth of soil 80% saturated.

Depth of soil =
$$\frac{1.5}{0.4} \times 1 = \frac{3.75}{10.4} \text{ m}$$

14.
$$m = 40\%$$
, $G_1 = 2.5$, $\omega = 12\%$

$$n = \frac{e}{1+e}$$

$$e = \frac{n}{1-n} = \frac{0.4}{1-0.4} = 0.666.$$

$$e = \frac{\omega G}{Sr} = \omega G$$
 (at full saturation).

$$\omega = \frac{2}{3x^2.5} = 26.6\%$$

Take
$$\tilde{v}_w = 1 \text{ ton/m}^3$$
. $\Rightarrow \tilde{v}_d = 1.5 \text{ t/m}^3$.

Weight of water to be added to adieve full, saturation $= 1.5 \times 100 \left(\frac{26.6 - 12}{100} \right)$

$$=$$
 $\frac{21.9}{}$ tons.

16. Let c2 be void ratio at increased volume of soil

$$\frac{V_2}{V_1} = \frac{1 + e_2}{1 + e_1}$$

$$\frac{1.05V_1}{V_1} = \frac{1 + e_2}{1 + 0.667} \implies e_2 = 0.75$$

Let was be water content at increased volume,

$$e_2 = \underbrace{\omega_3 G}_{Sr}$$

$$0.75 = \underbrace{\omega_3 \times 2.5}_{Sr=1}$$

$$\Rightarrow \omega_3 = \underbrace{30\%}_{}$$

17.

()

()

 \bigcirc

 \bigcirc

Net weight, W = 195 g.

Total vol. of solid, $V = 5^3 = 125$ cm³.

$$\omega = \frac{W - Wd}{Wd} \times 100 = \frac{60}{135} \times 100 = \frac{44.44}{60}$$

$$e = \frac{\omega G}{S_r} \Rightarrow e = 0.446$$

$$V_{\text{Sat}} = \frac{W}{V} = \frac{195}{125} = 1.56 \text{ g/cc}.$$

$$V_{\text{Sat}} = V_{\text{w}} \left(\frac{G+e}{1+e} \right) \implies 1.56 = 1 \left(\frac{G+0.44G}{1+0.44G} \right)$$
= 2.07.

. Vol of water =
$$\frac{ww}{vw} = \frac{60}{1} = \frac{60}{9}$$
 at $\frac{1}{2}$

$$\Rightarrow$$
 V₁ = 60 cc :. V₈ = 125 - 60 = 65 cm³.

$$e = \frac{V_V}{V_c} = 0.92.$$

$$\gamma_s = \frac{w_s}{V_s} = \frac{135}{65} = 2.07 \text{ g/cc} \Rightarrow G_1 = \frac{\gamma_s}{\gamma_w} = \frac{2.07}{1} = \frac{2.07}{1}$$

Q 100 g of dry soil having G=2.7 is mixed with water and 1 L of soil slurry is prepared. What is the unit weight of soil slurry in glcc.

$$G = \frac{\gamma_s}{\gamma_w} \Rightarrow \tilde{\gamma}_s = 2.7 g/cc$$

$$V_S = \frac{W_S}{V_S}$$
 : $V_S = \frac{W_S}{V_S} = \frac{100}{2.7} = 37.037$ cc

$$\Rightarrow$$
 $V_{w} = V - V_{S} = 1000 - 37.037$

=962.963

$$% \frac{1}{\sqrt{1}} = \frac{W}{\sqrt{1}} = \frac{Ws + Ww}{\sqrt{1}} = \frac{100 + Vw \times vw}{\sqrt{1}}$$

$$= \frac{100 + 962.963 \times 1}{1000} = \frac{1.063}{9100} glcc$$

16th Aug, SATURDRY

A marine soil has sp.gr. of solids as 2.7. and void natio as. 0.8. If sp.gr. of sea water is 1.063, calculate test of the soil. Take In of fresh water as 9.81 kN/m³.

$$G_1 = 2.7$$

$$\Rightarrow$$
 Know $\gamma_5 = 2.7$ g/cc.

 $V_{\text{sat}} = \frac{V_{\text{W}}(G+e)}{1+e} = \frac{19.64}{1+e}$ (valid only if see water is used)

$$G = \frac{\gamma_s}{\gamma_w} \rightarrow p$$
 we water

$$V_{\text{Sat}} = \frac{VW + Ws}{V} = \frac{Vs Vs + VwV sea water}{V}$$

$$= 9.\times 2.7 \times 1 + 0.8 \times 1 \times 10.1043$$
1+0.8

$$= 19.206 \text{ kN/m}^3$$

$$V_S = 1$$
 $V_W = eS_r$
 $V = 1 + e$ phase

The mass of an empty pycnometer is 0.498 kg when "O completely filled with water its mass is found to be 1.528 kg. An oven dried soil of mass 0.88 kg is placed in the pycnometer and water is added to fill the pycnometer and to total mass is found to be 1.653 kg. Determine 8p. gravity of soil particles

()

()

 $W_1 = 0.498$, $W_2 = 0.198$, $W_3 = 1.653$, $W_4 = 1.528$. $W_1 = 0.498$, $W_2 = 0.198$, $W_3 = 1.653$, $W_4 = 1.528$. $W_1 = 0.198$ $W_2 = 0.198$ $W_2 = 0.198$ $W_3 = 0.198$ $W_4 = 0.198$ $W_4 = 0.198$ $W_4 = 0.198$ $W_4 = 0.198$

A sample of clay, was coated with paraffin was and the total mars of soil and was was found to be 700 g. The sample was immersed in water and the vol. of water displaced was found to be 355 ml. The mars of the sample without was was 690 g. and water content of the soil was 18%. Determine bulk density, dry density, void ratio and degree of saturation. Take sp. gr. of soil solids as 2.7. and that of was as 0.89.

355 × 8 = $\frac{690}{2.7}$ × $\frac{10}{0.89}$.

Weight ob wax = 700 - 690 = 10 g.

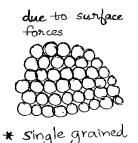
Density of wax = $\frac{10}{0.89}$ = 11.236 cc.

Volume of wax = $\frac{10}{0.89}$ = 11.236 cc.

Volume of 80il = vol. of water displaced - vol of wax

= $\frac{355 - 11.23}{1.13} = \frac{343.77}{343.77}$ cm³ $V = \frac{V}{V} = \frac{690}{343.77} = 2.007$ g/cc. $V = \frac{V}{V} = \frac{2.007}{1.18} = 1.7$ g/cc

 $\forall \lambda = \frac{GV\omega}{1+e} \Rightarrow e = 0.588$


 $e = \frac{wG}{Sr} \Rightarrow Sr = 82.65\%$

16th Aug, SATURDAY

3. SOIL STRUCTURES & CLAY MINERALOGY

1 Types of Structures

- 1. Single Grained Structure -> in gravel & coarse sand
- 2. Honey comb structure -> in fine sand & sitt
- 3. Floculent structure -> in clays
 - 4 Disposed structure. -> in remoulded clays
 - 5. Combined structure -> in soil mixtures

2 contreme cases.

loosest (cubical array)

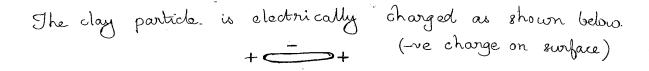
Choical work

densest (diagonal packing)

Cmin = 0.35

structure

- very sensitive to vibrations (deviences in vol. due to vibrations)
- _ It collapses on wetting. (volume decreasing)
- * Honey Comb Structure collapsible soils. Eg: looss, fine sand, sitt


- Panticle Shapes.

(i) Angular: gravel (ii) Rounded: gravel (iii) Flaky: clay soils.

sand

sand

sand

3nd Aug,

* Floculent Structure

ture +

- > relatively more strength
 - > stable.
 - > edge to face orientation
 - > net attraction.

> relatively low strength * Disposed Structure. > Unotable > Jace-to-fee orientation I net repulsion Thixotropy: The phenomenon of regaining of strength with possage of time under const. water content is called Thiscotropy Dispersed. Floculent Structure Structure Remoulding In clay, Due to remoulding, strength decreases. Due to thiscotropy, strength regains. Marine clay > flocculent structure. Lake clay -> disporsed structure (Fresh water) The presence of salts in seawater and due to its alkaline nature, salts acts as flocculating agents. The marine clay has floculent structure. \rightarrow Minerals. (i) Rock Minerals. - no surface activity. - Eg: Quartz, mica, feldspar. (ii) Clay Minerals. - have surface activity. (like cohesion, electrostatic, chemical - Eg: Kaolinite, Illite, Montmonillonite, Holloysite. * Kaolinite - causes no swelling 8 no shrinkage. - it is present in china clay (used to make earthenward utensils)

* Mite:

- causes medium swelling & strinkage present in most of the clays

* Montmorillonite:

- causes large swelling and large shrinkage.
- present, Bentonite clay & B.c soil.

* Holloysite:

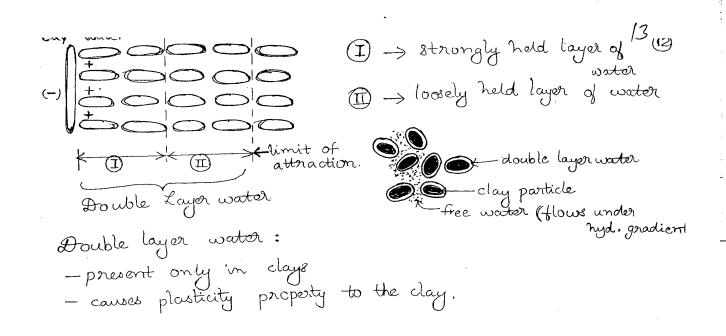
- similar to Kaolinite

NOTE:

- @ Plasticity of Kaolinite < Plasticity of Ilite < Plasticity of Montmorillonite.
- ⊙ SSA of Kaolinite < SSA of Thite < SSA of montmorillonite SSA - Specific Surface Area (S.A por unit weight).

-> Specific Surface Area (SSA).

- 1. It is the surface area per unit weight $\Rightarrow \frac{A}{N}$ 2. It is the surface area per unit volume $\Rightarrow \frac{A}{V}$


$$SSA = \frac{A}{V} = \frac{4\pi r^2}{\frac{4}{3}\pi r^3} = \frac{3}{r}$$

$$\Rightarrow SSA \propto \frac{1}{8i3e \text{ of soil positions}}$$

Gravel -> least SSA { increasing order.

Clay -> highest SSA

-> Diffuse Double Layer Water (on Adsorbed Water)

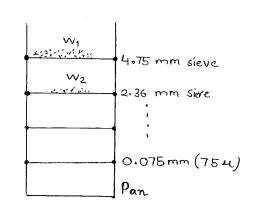
INDEX PROPERTIES OF SOILS

Soil Properties

1. Indesc Properties

2. Engineering Properties

-indicative of behaviour of soil. - wed for engg, applications Eg: grain size distribution, relative devoity, attorberg limits.


Eg: - permeability, shear strengt compressibility.

-> Grain Size Distribution.

- by (i) Sieve analysis -> used if size > 754 (ii) Sedimentation analysis. - used if size < 75 4

* Sieve Analysis.

Size (mm)	% retained.	cumulative	% finer.
4.75	$P_1 = \frac{W_1}{W} \times 100$ $P_2 = \frac{W_2}{W} \times 100$		100-P ₁
0.075		-	

size vs % finer graph is plotted.

- * Sedimentation Analysis
 - an indirect method.
 - -based on "Stoke's Principle"

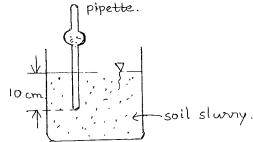
Settling velocity of particle,

$$V_S = \frac{9}{18} (s-1) \frac{d^2}{\gamma}$$
 Stoke's equation.

 $V_{\rm S} \approx 900 \, {\rm d}^2 \longrightarrow {\rm approximate} \, {\rm 8to} \, {\rm kes} \, {\rm egn}$ (mm/s)(mm)

Assumptions:

- laminar flow
- patticle settle independently without interference.
- Stokes law is valid only if size is between 0.24-0.21


 off size > 0.2 mm, it will cause turbulent condition

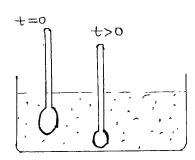
 off size < 0.2 M, there will be Brownian movement?

 (zig-zag movement)

* Sedimentation Analysis methods:

1. Pipette Method.

2. Hydrometer method

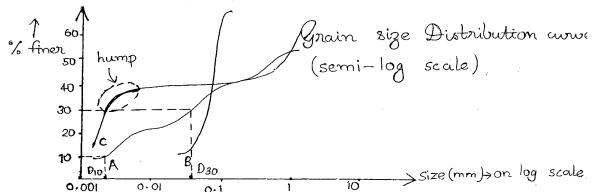

0

 \bigcirc

 \bigcirc

0

 \bigcirc



> Corrections for Hydrometer reading.

(i) Temperature connection (if temp = 27°c)

(ii) Meniscus correction

(iii) Dispersion agent correction (Sodium hercametaphosphod

Log Scale is used because:

a) There is large range of data $(\frac{10}{0.001} = 10000 \text{ times})$ b) to get straight line

A -> well graded soil - has different sizes

B -> uniformly graded soil - same size of particles (sanddur

C -> gap graded soil - certain sizes are missing.

B&C -> poorly graded soil.

-> Important size of Soil. Particle.

- a) Dio -> effective size of soil.
- b) D30
- c) D60

D: diameter & 10,30,60 -> % finer

-> Coeffecient of Uniformity (Cu)

$$Gu = \frac{D_{60}}{D_{10}}$$

For well graded gravel, Cu>4

For well graded sand, Cu>6.

If Cu lies blu 182, it is called "Uniformly Graded 8

-> Coeffecient of Curvature (Cc)

$$C_{\rm c} = \frac{{\rm D_{30}}^2}{{\rm D_{60}} \times {\rm D_{10}}}$$

> For a well graded soil, 1 < Cc < 3 > Cc represents shape of curve.

NOTE: Grain size distribution curve is useful only for cohesionless soil (gravel, sand). In the case of clay, grain size distribution curve is not useful, : the clay behaviour is nainly wortrolled by consistency limits.

-> Relative Density, or Density Index, ID

$$I_{D} = \left(\frac{C_{\text{max}} - e}{C_{\text{max}} - e_{\text{min}}}\right) \times 100$$

emin ≤ e ≤ emax

Emax -> max. void ratio in the loosest state.

Emin -> min. void ratio in the densest state.

e -> natural or insitu void ratio.

If the soil is the loosest state (e=emax), $I_D=0$.

If the soil is the densest state (e=emin), $I_D=100\%$

 $\mathbb{O} \leqslant I_{D} \leqslant 100\%$

 \bullet I_D < 15% → Very loose 8 estate 15 < I_D < 35% → loose 8 tate. 35 < I_D < 65% → medium dense. 8 tate.

 $65 < I_D < 85\%$ \rightarrow dense state $I_D > 85\%$ \rightarrow very dense state.

The more the Ip value, more will be the density,

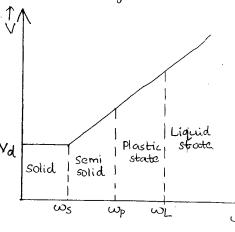
$$\frac{\aleph_d = \frac{G \aleph_w}{1+e} \Rightarrow e = \frac{\aleph_w G}{\aleph_d} - 1}{I_D} = \frac{1}{\frac{\gamma_d \min}{1 - \frac{1}{\aleph_d \max}}} \times 100$$

- -> Consistency Limits or Atterberg Limits
 - exist only for cohesive soil.

 \bigcirc

 \bigcirc

- depending upon water content of soil;
 - 1. Liquid State.
 - 2. Plastic state
 - 3. Semi-solid state
 - 4. Solid state.


* Atterberg Limits: these are the boundary w/c blw two different states of soil

water

* Types of Attendery Limits:

- 1. Liquid limit, LL or WL
- 2. Plastic limit, PL or wp
- 3. Shrinkage limit, SL or ws

50il

26th Aug, → Jo find WL

- Casagrand's Liquid limit

test. W n ω_{L}

到low, Index

no. of blows (n), $\frac{W_1 - W_2}{\log_{10}\left(\frac{n_2}{n_1}\right)}$; slope of the flow curve.

We- w/c at which 25 no, of blows can close the groove of the apparatus

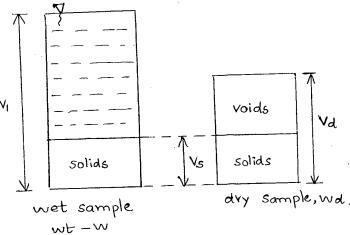
Flat Flow come has relatively more shear strength compared to a steep flow curve,

n, < n2 < n3, more no. of blows required to close the groove. : Shear strength of A < B < C

Shear strength a

* Instead of rubber sheet, if hard rubber sheet is decreases. If soft rubber sheet is used, then WL WL increases

* At liquid limit condition, shear strength of soil is 2.7 kN/m² and is same for all soils. (Shear strength is zero for all soils in the liquid state)


-> Plastic Limit Test. (or Thread Test)

Plastic limit is the minimum w/c at which.

80il can be rolled into a thread of 3mm diameter without crumbling.

-> Shrinkage Limit.

Shrinkage limit is the minimum w/c that can make the soil July saturated (Sr=100%). Or it is the min. w/c that can be filled in the voids of soil with 10% desaturation

partially saturated.

$$S_{r=0}$$
 $S_{r=100\%}$
 $S_{r=100\%}$
 $S_{r=100\%}$

1.
$$\omega_{S} = \frac{\left(V_{d} - V_{S}\right)V_{w}}{V_{d}} \times 100$$

$$\omega_{S} = \frac{\left(\frac{1}{V_{d}} - \frac{1}{V_{S}}\right)V_{w} \times 100}{\left(\frac{1}{G_{m}} - \frac{1}{G}\right) \times 100}$$

$$= \frac{\left(\frac{1}{G_{m}} - \frac{1}{G}\right) \times 100}{\left(\frac{1}{G_{m}} - \frac{1}{G}\right) \times 100}$$

 \bigcirc

$$e = \frac{\omega G}{S_r}$$

$$e = \frac{\omega_s G}{1}$$

3.
$$w_s = \frac{e}{6} \times 100$$
; $e \rightarrow void ratio at saturation level or dry condition$

4.
$$w_5 = \left(\frac{w_1 - \left(\frac{v_1 - v_d}{v_d}\right) v_w}{v_d}\right) \times 100$$

$$w_1 \rightarrow \text{initial water content} = \frac{w - w_d}{w_d}$$

→ Shrinkage Ratio (SR).

$$SR = \frac{V_1 - V_2}{\frac{V_d}{\omega_1 - \omega_2}} \times 100$$

$$S_R = \frac{(V_1 - V_d)}{V_d \times 100}$$

$$\rightarrow \text{Volumetric 8hrinkage (Vs)}$$

$$Vs = \frac{V_1 - Vd}{Vd} \times 100$$

$$SR = \frac{\frac{(V_1 - Vd)}{Vd}}{\frac{(V_V - Vd)}{Vd}} = \frac{Yd}{Yw}$$

$$SR = VS \over \omega_1 - \omega_S$$

Also
$$SR = \frac{Yd}{Yw}$$
; $Yd = \frac{wd}{Vd}$

SR is the mass. specific granity in dry condition.

→ Plasticity Index, Ip

 $I_p = \omega_L - \omega_P$

; non plastic soil. A $I_p = 0$

> ; low plastic soil. $I_P < 7$

; medium plastic soil.

; high plastic soil.

> Shrinkage Index, wis

$$I_s = \omega_p - \omega_s$$

-> Joughness Index, IT

$$I_T = I_p$$

$$I_f$$
Shear strength $\propto I_T$

-> Consistency Index., Ic

$$I_{c} = \frac{\omega_{L} - \omega}{I_{p}} \times 100$$

-> Liquidity Index, IL

$$I_L = \frac{\omega - \omega_p}{I_p} \times 100$$
; $\omega \Rightarrow \text{natural } \omega \approx 0$

$$I_c + I_L = 1$$
 or 100%

 \odot H IL >1, the soil is in liquid state.

(w> WL > liquid state)

⊙ If IL is -ve, the soil is either in semi-solid or solid sta (w(wp).

0

 \bigcirc

0

()

0 ()

0 \bigcirc

 \bigcup

 \bigcirc

 \bigcirc

0

0 \bigcirc

 \bigcirc

Ó. \bigcirc

-> Activity Number, A

 $A = \frac{Ip}{C}$; C = % of clay particles.

O For a given soil, A is constant.

'A' indicates swelling and shrinkage characteristics.

A < 0.75; mactive soil.

0.75-1.25; normal active soil.

>1.25; active soil. (Bentonite & BC soil)

-> Effect of Size of Particle.

 \odot If size of particle decreases, W_L increases \Longrightarrow Ip increases \Longrightarrow Ip increases

⊙ of gilt or fly ash is added to clay, ω decreases ⇒ Ip decreases ⇒ Ip decreases

consistency: resistance against deformation, depends or water content. More the w/c, less the consister

mancless — more consistent.

son consistent wet clay dry clay

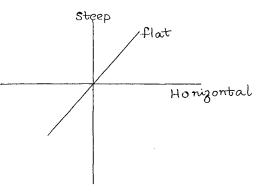
@ plasticity: property due to which soil deforms plastically without rupture is called plasticity.

Sand wet clay

• If lime is added to clay, We decreases, Wp increases and Ip decreases.

0.1242

0.2472


Vd

Ws

2.

$$\bigcirc$$

()

$$\gamma = 1746 \text{ kg/m}^3$$
; $\omega = 8.6\%$

$$8d = \frac{8}{1+\omega} = \frac{1746}{1.086} = 1607 \text{ kg/m}^3$$
; $8s = 2.6 \text{ g/cc}$

$$\forall d = \frac{GYw}{1+c} \Rightarrow e = 0.617.$$

$$I_D = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}} = \frac{0.642 - 0.617}{0.642 - 0.462} = \frac{13.9 \%}{6}$$

2.
$$\omega_L = 45\%$$
; $\omega_p = 33\%$

$$W_L = 45\%$$
; $W_p = 33\%$

$$\frac{V_L - V_d}{V_d} \times 100 = 36\%$$
; $\frac{V_p - V_d}{V_d} \times 100 = 24\%$

$$\frac{V_b - V_d}{V_d} \times 100 = 36\%$$

$$\frac{0.12}{45-33} = \frac{0.24}{33-\text{Ws}}$$

$$SR = \frac{V_{L} - V_{d}}{V_{d}} \times 100$$

$$= \frac{36}{45 - 9} = \frac{1}{45}$$

$$\frac{1}{w_L - w_S} = \frac{33}{45 - q} = \frac{1}{45}$$

4.
$$Gm = \frac{6sat}{8w} = 1.88$$

$$Gm = \frac{Yd}{Yw} = 1.74$$

$$e = \frac{\omega 6}{Sr} = 0.46$$

$$\forall sat = \forall \omega \left(\frac{G+e}{1+e} \right)$$

$$\frac{1.88}{1 + 0.46}$$

5.
$$W_S = \left(\frac{1}{6m} - \frac{1}{6}\right)_{100} = \left(\frac{1}{1.74} - \frac{1}{2.9}\right)_{100} = 23\%$$

6.
$$SR = \frac{Yd}{2w} = \frac{1.74}{2}$$

$$7 \quad W = 95.6 \text{ gm} ; V_1 = 68.5 \text{ cc}$$

$$Vd = 43.5g$$
 ; $Vd = 24.1$ cc.

Initial water content of soil,
$$w_1 = \frac{w - wa}{wd} \times 100$$

$$= 119.77\%$$

Shrankage limit,
$$w_s = \left(w_1 - \frac{(v_1 - v_d)w}{wd}\right)_{100}$$

$$= \left(1.197 - \frac{(68.5 - 24.1)_1}{43.5}\right)_{100}$$

$$= \frac{17.7\%}{6}$$

8.
$$\omega_S = \left(\frac{1}{Gm} - \frac{1}{G}\right)$$
 100

$$G_m = \frac{\gamma_d}{\gamma_w}$$
; $\gamma_d = \frac{\omega_d}{\gamma_d} = 1.804$.

$$17.7\% = \left(\frac{1}{1.804} - \frac{1}{6}\right)100$$

1 }

0

(])

 $\left\{ -\frac{b}{2}\right\}$

 \bigcirc

()

0

 \ominus

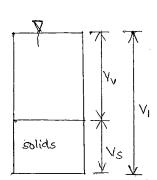
1)

 $\xi_{i,j} :$

$$Q_1 = \frac{w_1 G}{Sr} = \frac{1.197 \times 2.65}{1} = 3.15$$

$$V_{d_1} = \frac{w_5}{V_1} = \frac{43.5}{68.5} = 0.635 \text{ g/cc}$$

$$\aleph_{d_1} = \frac{\Upsilon_{\omega}G}{1+e_1} \Rightarrow e_1 = \frac{3.15}{1}$$


Vect =
$$\gamma_{\omega} \left(\frac{G+e_1}{1+e_1} \right)$$

$$\frac{\omega}{V_1} = \left(\frac{2.65+e_1}{1+e_1} \right) = \frac{95.6}{68.5}$$

$$V_S = \frac{W_S}{Y_S} = \frac{43.5}{GY_W} = 16.42 \text{ cm}^3$$

$$V_{v} = V_{1} - V_{5} = 52.08 \text{ cm}^{3}$$

$$e_1 = \frac{V_V}{V_S} = \frac{52.08}{16.42} = \frac{3.17}{16.42}$$

To find final void natio, ez:

$$C_2 = \omega_S G$$

= $\frac{17.7}{100} \times 2.65 = 0.47$

$$7d2 = \frac{W_S}{V_2} = \frac{1.804 \text{ g/cc}}{7d_2} = \frac{\text{Yw G}}{1 + \text{C}_2}$$

$$C_2 = 0.47$$

$$\frac{\sqrt{2}}{V_1} = \frac{1+e_2}{1+e_2}$$

$$\frac{24.1}{68.5} = \frac{1+e_2}{1+3.15}$$

 $V_1 = 100$

Vd

(15%) (18%) (30%).

$$e_1 = \frac{w_1 G}{5r} = \frac{0.3 \times 2.72}{1} = 0.816$$

$$V_1 = 100 \, cc$$
.

Let ez be void natio at Ws.

$$\frac{V_1}{V_d} = \frac{1 + e_1}{1 + e_2}$$

$$\frac{100}{V_2} = \frac{1 + 0.816}{1 + 0.489} \implies V_2 = 82 \text{ cc} = \text{Vd}$$

$$w_s = w_1 - \frac{(v_1 - v_d) \delta w}{w_d} \quad (lengthy)$$

11.
$$\forall d = \frac{\text{wd}}{V} = \frac{390}{225} = 1.733 \, \text{g/cc}.$$

$$\forall d = \underbrace{\forall w G}_{1+e_1} \Rightarrow e_1 = 0.56.$$

Let ez be void ratio at increased volume.

$$\frac{V_2}{V_1} = \frac{1+e_2}{1+e_2} \Rightarrow \frac{1.08 \, V_1}{V_1} = \frac{1+e_2}{1+0.56}$$

$$e_2 = \frac{\omega_2 G}{Sr} \Rightarrow 0.47 = \omega_2 \times 2.7$$
 $\omega_2 = \frac{25.4\%}{S}$

$$D_{12}$$
. $C_u = \frac{D_{60}}{D_{10}} = 4$

$$D_{60} = 4 D_{10}$$
.

$$C_c = \frac{D_{30}^2}{D_{60} \times D_{10}} = 1$$

$$\frac{D_{30}^2}{4D_{10}^2} = 1 \implies \frac{D_{30}}{D_{10}} = 2$$

$$I_{3}$$
. $I_{p} = w_{L} - w_{p}$

$$15 = 5b - W_p$$

:.
$$w_p = 41/0$$

: given natural water content (w=45%) lies blu liquid limit & plastic limit, the soil is in plastic state.

5. SOIL CLASSIFICATION

→ IS Particle Size Classification System

* Grain Size only-criteria

2)	· 75	54	4.75mm	80mm	300 mm
Clay	Sit.	Sand.	Gravel.	Cobble	Boula

The colloidal soil particle size is less than the clay size. Abowever in our Indian usde of practice, colloidal soil is not recognized.

But the Indian classification based on size alone is not always true. For eg: Rock dusts or nock powder's particle size is less than 24 and hence belong to clay as por Indian system. But nock dust has no plasticity.

-> HRB Soil Classification System.

- HRB - Highway Research Board.

* Criteria: a) Grain size distribution.

b) Consistency on Atterberg limits

-This system is more useful for povement design.

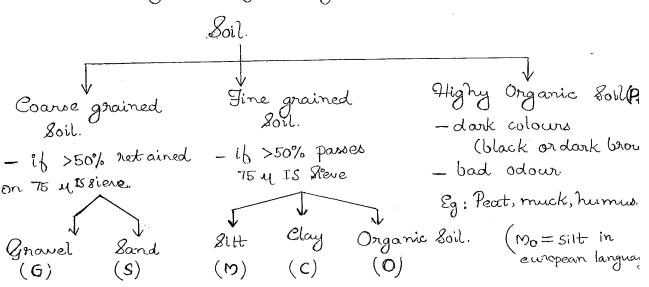
-In this system, soils are given group numbers like

 $A_1, A_2, A_3, \ldots, A_7, A_8.$

- The smaller the group number, the better the soil for powement purpose. ie A1 is better than A2. A2 is better than A3 and 30 on.

As group - highly organic soil (worst soil for constructor A7 group - black cotton soil.

.- Group Indese, GI: an indese value calculated by an & emperical equation. GI value depends on a) % of soil passing 75 4 sieve. b) WL c) wp or Ip GI values ranges from 0 to 20 If GI value is found to be negative from equation, it reported as 'zero'. GI indicates quality of soil within its own group. The smaller the GI value, the botter the soil for pavement purpose. - Symbol: A5(6)1_ Group no. -> Unified Soil Classification System. - most popular in European countries. - criteria: a) grain size distribution data. b) consistency limits c) compressibility characteristics. Soil Classification System.


- followed by all engineering departments in India.

(,)

()

 $\left(\right)$

 \bigcirc

Gravel - if more than 50% of coarse fraction retained on 4.75 mm sieve

Sand - if > 50% coarse fraction parses 4.75 mm sieue,

- Gravel:

- a) Well graded Gravel GW
- b) Poorly graded Gravel GP
- c) Silty gravel. GM
- d) Clayey gravel. GC

- Sand:

- a) Well graded sand SW
- b) Poorly graded sand SP
- e) Sittly gravel sand SM
- d) Clayey gravet sand SC
- oclayey sand
 - ⇒ clay qty < sand qty
- · Siltey Clayey gravel
 - → silt qty < clay qty < gran
- · Sandy clay
 - ⇒ sand qty < clay qty.

_ Silt :-

- a) Low compressible sitt ML
- b) Intermediate compressible sitt MI
- c) Highly compressible 87lt, MH

a) CL

a) OL

b) CI

p) OI

c) CH

c) OH

-Jotal group symbols =
$$8 + 9 + 1 = 18$$
 groups.

- If
$$\omega_L < 35\%$$
 - Low compressible

- 35% WL < 50% Intermediate compressible.
 - WL > 50 % Highly Compressible.

- to classify the fine grained soils.

- * To identify Organic Soils:
- a) Colour test Dark wlows (black or dark brown)
- b) Odown test. Bad odowr.
- c). We test before and after oven

CI30 20 CLMI 40 60 $\omega_{\mathsf{L}}($ PLASTICITY CHART

For organic soils, WI decreases (by more than one fount ob initial value) after oven drying.

- * Boundary Classifications:
 - i) CL-CI, CI-CH
 - ii) ML-MI, MI-MH
 - (iii) OL -OI, OI OH
 - (iv) MI-CI, MH-CH. (coarser particle should be given preference : MI-CI CI-MIX

Classify the fine grained soil with $\omega_L = 60\%$, $\omega_p = 20\%$.

Ip of soil = 60-20 = 40%

Ip of A-line = 0.73 $(w_L-20) = 29.2\%$

Since Ip of soil is > Ip of A line, the point plots

 \Rightarrow clay. A line

 \bigcirc

=> highly compressible.

:. 80il is CH.

Q.
$$w_L = 20\%$$
, $w_p = 15\%$

$$I_p = 5\% \text{ (blw 4 87)}$$

$$w_L = 20\%$$

$$\longrightarrow CL - ML$$

- Equation of Ip vs Wz is called A-line because A is the surname of A. Causagrande.

→ GW: (i) if fines <5% (ii) Cu>4 (iii) Cc lies blu 18.

GP: if (i) fines <5% (ii) not meeting above gradatic requirements (Cc & Cu).

GM: it (i) fines >12% (ii). Ip value < 4% or Atterberg urnits fall below A-line.

GC: it ii) fines >12% iii) Ip >7% with Attenberg limit

If fines lies between 5% & 12%, it is a bonder line case requiring dual symbol.

For eg: GW-GC, GP-GM, GP-GC, GW-GM

Ip lies blue 4 & 7%, it is a bonder line case requiring dual symbol. For eg:- GM-GC.

q. $\sin = 3\%$, $C_u = 5$, $C_c = 2$ $\Rightarrow GW$

Q. Fines = 15%, Ip = 2% => GM.

q. $\sin c = 10\%$, $C_u = 5$, $C_w = 2$, $I_p = 5\%$ $\Rightarrow G_w - G_w$ In case of bordon line cases, the coarser one is to be favour (or) the coarser one is given priority.

Botween organic soil and clay, the organic one is warser on CI-OI X
OI-CI

 \rightarrow In the case of sand, all the conditions are same except Cu > 6.

→ Single Clay Particle } not visible to Single sitt particle I naked eye

Siza	% Retained	Cumulative %	% Finer
600 Y	245 ×100 = 40%	40%	ومْدٍ\
500 M	300 X100 = 50%	90%	10%
425 y	10%	100%	0

Dea = diameter corresponding to 60% finer = 600 H.

$$D_{10} = 500 \text{ Al}$$

$$C_{10} = \frac{D_{60}}{D_{10}} = \frac{600}{500} = \frac{1.2}{500}$$

 $\begin{array}{ccc} O & 3 & Cu & < 6 \\ O & & \Rightarrow \underline{SP} \end{array}$

0

U 4. WL = 42% ie b/w 35% & 50% \Rightarrow intermediate, I $\frac{MI}{}$

0.5. Fine = $\frac{250}{1000} \times 100 = 25\%$

Coarse fraction = 100-25 = 75% => warse grained soil.

$$I_p = 42-20 = 22\%$$
 >78%
 $I_p \circ b$ A line = 0.73(w_L-20) = 16.06%
 $I_p > I_p \circ b$ A line. : pt. lies above A line.

Gravel
$$f$$
 raction = 100-60 = 40% (more than 50% of 70%)

{ Gravel + 8and = 70% .

Ip of A line =
$$0.73(\omega_{L}-20) = 10.95\%$$

$$:$$
 point falls below A-line $:\Rightarrow \underline{Gm}$

Cu =
$$\frac{D_{60}}{D_{10}} = 1.78$$
.
Cu = $\frac{D_{30}^2}{D_{30}^2} = 0.95$ poonly graded.

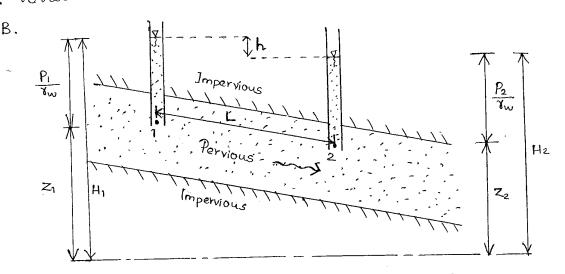
$$D_{60} = 0.41 \text{ mm}. \Rightarrow 60\% \text{ passing } 0.41 \text{ mm}. (82 4.75 \text{ mm})$$

:. 8 and

D60. D10

Sept,

0

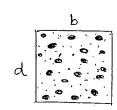

6. PERMEABILITY

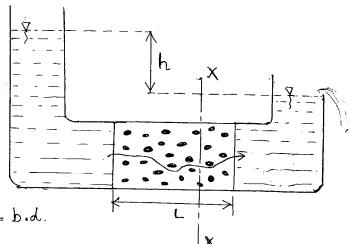
- Flow occurs only when there is difference in the total heads blue the two points.
- Pressure head difference alone or elevation difference alone may not cause the flow.

- In the case of soils the relocity head is neglected (negligible),

(regligible), At point A	At point B.	B. V
$\frac{P}{Yw} = y$.	$\frac{P}{\chi_{w}} = 0$	y P/8w
z = 0	z = y.	A datum line piezomete:
Jotal head,	Jotal head, H= y.	

· total head is same (=y) at both A & B, no flow occurs blu A




: Total head difference & or total head loss, $h = H_1 - H_2$ The total head loss blue any two points in a soil mass is equal to the difference in the elevations of water in the two piegometers kept at those two points.

Hydraulic gradient, $i = \frac{h}{L}$; $L \rightarrow 8eepage$ length.

Hydraulic gradient is the head loss por unit seepage langth.

els at xx:

Total c/s area of soil, A = b.d.

Area of voids or Actual area of flow = Av = nA; $n \rightarrow ponoxity$ of soil.

Discharge velocity or $V = \frac{Q}{A}$.

Actual velocity on $V_s = \frac{Q}{A_V}$.

Q = AV = AVYS

$$V_s = \frac{V}{n}$$

n < 1 always, $\Rightarrow V_s > V$.

-> Darcy's Law

Discharge velocity & Flydraulic Gradient.

V & i

DARCY'S EQUATION v = ki

K -> Coefficient of Permeability of soil.

If i=1, $V=K\Rightarrow$ Coeffectient of velocity permeability is the (24) discharge velocity occurring under unit hydraulic gradient. 25 units of k: cm/s. or m/s or m/hour.

If $k > 10^{-1}$ cm/s \Rightarrow Permeable Soil' $k < 10^{-7}$ cm/s \Rightarrow Importmeable Soil'

Pormeable soil - gravel, coarse sand. Impermeable soil - 8tiff clays.

Soil	Gravel	Sand	. Silt	Clay.
K	10°	10	10-4	10 6.
r (cm/s)	$(10^{1} - 10^{1})$	$(10^{1} - 10^{-3})$	$(10^{3} - 10^{5})$	$(10^{5}-10^{7})$

O Darajs Zaw is valid for Zaminar flow only. In soils, it reynolds number, $Re \leq 1$, it is laminar.

Reavak

: as KI, Re I and flow becomes laminar.

• Clay, silt & fine 8 and - flow is laminar.

$$V = Ki$$
 $V_S = K_P i$

Kp -> coefficient of percolation.

$$K_p = \frac{K}{n}$$

$$K = C. D_{10}^{2} \frac{e^{3}}{1+e}, \frac{y_{w}}{4}$$

 $C \rightarrow 8$ hape constant (C = 1 for perfectly spherical particle) $u \rightarrow dynamic viscosity.$

> Factors affecting k of Soil: - shape of particle - Organic matter - size of particle - specific surface area - void ratio - Stratification etc. - proportics of fluid - degree of saturation. * Effect of Size, Dro. K & Dio2 * Effect of Specific Surface Area K & 1 SSA. * Effect of shape. K of nounded particles is more compared to angular particle since SSA of rounded particle is loss. * Effect of void ratio $K \propto \frac{e^3}{1+e}$; also $K \propto e^2$ also log K & e (latest one) The more the void natio, more will be permeability. But this cannot explain reason for clay's low pormedility and clay has low permeability though it has high void natio. Ka Ce3 Clay has lowest value of c. So the product of c & e will be low. Ka Vw · Ka i a temperature ua 1 temp k a temperature.

* Effect of Degree of Saturation

k of partially saturated soil is relatively less compared to July saturated soil. (air blocking)

* Effect of Organic matter.

Organic matter decreases k of soil. Due to low specific gravity of organic matter, it flows along with water and fills the voids.

Soil Property

$$k = C.D_{10}^{2} \cdot \frac{e^{3}}{1+e} \cdot \frac{y_{w}}{4}$$
Fluid properties.

$$k = k_0 \cdot \frac{\gamma_w}{4}$$

ko > intrinsic permeability of soil (Inherent property).
Muits of ko: cm² or m² or darcys

$$1 \text{ davcy} = 9.87 \times 10^{-13} \text{ m}^2$$

-> Tests to Determine k of soil.

- 1. Constant Head Test.
- 2. Variable Head test
- 3. Capillarity Permeability tost
- 4. Consolidation test
- 5. Pumping out test } Field test.
- 6. Pumping in test.

Pumping out test: most accurate, used for large engg. projects.

Consolidation test: suitable for impermeable clays.

Capillarity Formeability test: for partially saturated soils.

Constant head test: for coarse grained soils Variable head test: for fine grained soils

Pumping in test: to find k of individual layer of soil.

() ()

0

0 0

Ů.

.

1 2

0

0

0

0

0

C

2^{na} Sept, TUESDAY

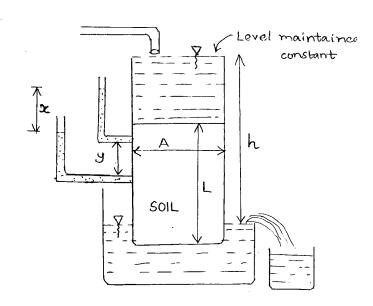
- Constant Head Jest

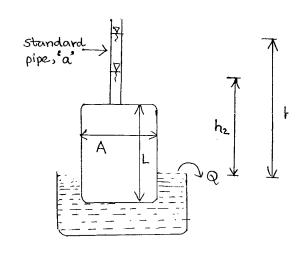
$$Q = kiA$$

$$Q = k \frac{h}{L} A$$
.

$$i = \frac{h}{L} = \frac{x}{y}$$

$$k = QL$$
Ah.


-> Naniable Head Jest.

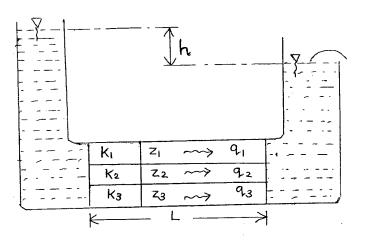

$$adh = Q \cdot dt$$

$$= k \frac{h}{L} A \cdot dt$$

$$\int_{h_2}^{h_1} \frac{dh}{h} = \frac{kA}{La} \int_{0}^{t} dt.$$

$$: \quad K = \frac{aL}{At} \log_e \left(\frac{h_1}{h_2} \right)$$

> Flow Panallel to Bedding Plates. Total head loss = h Let hi, h2, h3 -> head losses in layers 1,2 &3 rsptty.


$$h_1 = h_2 = h_3 = h$$
.
 $i_1 = i_2 = i_3 = i = \frac{h}{L}$
 $Q = q_1 + q_2 + q_3$

$$Q_1 = k_1 i_1 A_1$$

$$= k_1 \frac{h_1}{L} \cdot (z_1 x_1)$$

$$q_2 = k_2 i_2 A_2$$
) $q_3 = k_3 i_3 A_3$
= $k_2 \cdot h_2 \cdot (z_2 x_1) = k_3 \cdot h_3$

$$q_3 = k_3 i_3 A_3$$

= $k_3 \cdot \frac{h_3}{l} \cdot (z_3 \times 1)$

Let K_H be everage permeability for entire soil as a 27

$$Q = k_{H} \cdot i \cdot A$$

$$= k_{H} \cdot \frac{h}{L} \cdot (z_{1} + z_{2} + z_{3}) \times 1$$

KH. i. A = k1, i1. A1 + k2. i2. A2 + k3 i3 A3.

$$k_{H}.(z_{1}+z_{2}+z_{3})_{.1} = k_{1}.z_{1}.1+k_{2}z_{2}.1+k_{3}z_{3}.1$$

$$k_{H} = \frac{k_{1}z_{1} + k_{2}z_{2} + k_{3}z_{3}}{z_{1} + z_{2} + z_{3}}$$

-> Flow Perpendicular to Bedding Plane.

h -> total head loss.

$$h = h_1 + h_2 + h_3$$

$$q_1 = q_2 = q_3 = Q$$

Let Ky be average permeability for entire soil.

$$Q_1 = k_1 \cdot i_1 \cdot A_1$$
$$= k_1 \cdot \frac{h_1}{z_1} \cdot A_1$$

$$Q_2 = k_2 i_2 A_2$$
; $Q_3 = k_3 \cdot \frac{h_3}{Z_3} \cdot A$
= $k_2 \cdot \frac{h_2}{Z_2} \cdot A$

$$Q = k_{V}$$
, i. A
= k_{V} , $\frac{h}{z_{1} + z_{2} + z_{3}}$. A

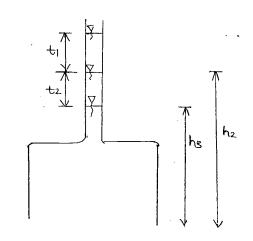
$$K_{V} = \frac{z_{1} + z_{2} + z_{3}}{\frac{z_{1}}{K_{1}} + \frac{z_{2}}{K_{2}} + \frac{z_{3}}{K_{3}}}$$

P-30

$$\frac{k_2}{k_1} = \frac{\chi_{w2}}{\chi_{w1}}, \frac{\chi_1}{\chi_2}$$

$$= 0.9 \chi_{w1}$$

$$= \frac{0.9 \text{ Yw}_1}{\text{Yw}_1}, \frac{\text{M}_1}{0.75 \text{ M}_1} = 1.2.$$


$$k_2 = 1.2 k_1 \implies 20\%$$
 increase.

2. Given
$$t_1 = t_2$$
.

$$\frac{aL}{AK} \log_e \frac{h_1}{h_2} = \frac{aL}{A \cdot K} \log_e \frac{h_2}{h_3}.$$

$$\frac{h_1}{h_2} = \frac{h_2}{h_3}$$

$$h_2^2 = h_1 h_3$$

3,
$$k_i = 2$$
 $z_i = 2$

$$k_2 = 3 \qquad Z_2 = 1$$

$$k_3 = 1$$
 $z_3 = 2$

$$K_V = \frac{Z_1 + Z_2 + Z_3}{\frac{Z_1}{K_1} + \frac{Z_2}{K_2} + \frac{Z_3}{K_3}} = \frac{5}{1 + \frac{1}{3} + 2} = \frac{3}{\frac{2}{2}}$$

4.
$$k_V = \frac{6+6+6}{\frac{6}{6}+\frac{6}{4\times 10^4}+\frac{6}{6\times 10^4}} = 2.667\times 10^{-4} \text{ cm/s}$$

$$t = \frac{aL}{A \cdot K_{v}} \log_{e} \frac{h_{1}}{h_{2}} = \frac{2 \times 18}{22 \times 2 \cdot 60 \times 10^{4}} \log_{e} \frac{25}{10}$$

$$= 3748.46 \text{ s}$$

$$L = \sqrt{2i^2 + 7^2}$$

0

٤

 \bigcirc

0

 \bigcirc

()

()

 \bigcirc

 \bigcirc

0

07

$$\frac{2i}{3} = 7$$

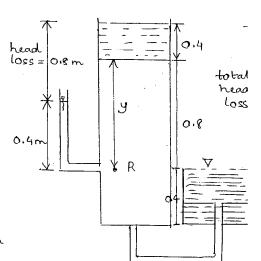
$$Q = KiA$$

$$= k \frac{h}{L} \cdot dx1$$

$$\frac{5}{1000} = k. \frac{2}{22.135} \times 4 \times 1$$

$$k = 0.0138 \text{ m/hz} = 3.85 \times 10^{-6} \text{ m/s}$$

Total head loss = 0.8+0.4 = 1.2 m.


Total scapage length = 0.8+0.4 = 1.2 m. head loss = 0.8 m

$$i = \frac{h}{L} = \frac{1.2}{1.2} = 1$$

For a seepage length of y,

head loss = ixy = 1x0.8 = 0.8 m

: Pressure head at R = 1.2-0.8 = 0.4 m

datum line is not given, let as assume, datum line at the dls water surface

. If als water surface is datum, then datum head at R=0.

Total head at R = Pressure head + datum head= 0.4+0 = 0.4 m

* If datum is taken to be bottom of soil,
datum head at R = 0.4 m.

Total head at R = pressure head + datum head= 0.4 + 0.4 = 0.8 m

Discharge velocity, V = ki = k.

Seepage velocity, $V_s = \frac{V}{n} = \frac{k}{0.5} = \frac{2k}{1}$

-> Allen Hazen's Equation:

$$K \approx 100 D_{10}^2$$
 $D \rightarrow cm$
 $K \rightarrow cm/s$

o The hydraulic conductivity of a soil at a void ratio of 0.8 is 0.047.cm/s. Estimate the hydraulic conductivity at a void ratio of 0.5.

At
$$e_1 = 0.8$$
, $K_1 = 0.047$

$$e_2 = 0.5$$
, $K_2 = 9$

$$K \propto \frac{e^3}{1+e} \implies \frac{K_1}{K_2} = \frac{e_1^3/1+e_1}{e_2^2/1+e_2}$$

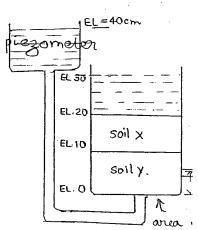
$$\frac{0.047}{K_2} = \frac{0.8^3/1.8}{0.8^3/1.5}$$

 $K_2 = 0.0137$ cm/s

A Kae2, K2 = 0.01835 cm/s

a. In fig. 8hown below, the 80il X has a pormeability of 4x10⁻³cm, and the head loss in 80il X is 9 times the head loss in 80il X as What is the permeability of the 80il Y?

b) what is seepage rate por how?


o, To what elevation would water rise in a prezometor inserted in soil y at elevation 5 cm 9

a) Jotal head loss, h = 40-30 = 10 cm.

$$hx + hy = h. = 10 cm \longrightarrow 1$$

given, $hy = 9 hoc.$

$$hx = 1 cm$$

$$hy = q cm$$

$$Q_{\infty} = Q_{y}$$

$$k_{\infty} \cdot \frac{h_{\infty}}{Z_{\infty}} \cdot A_{\infty} = k_{y} \cdot \frac{h_{y}}{Z_{y}} \cdot A_{y}.$$

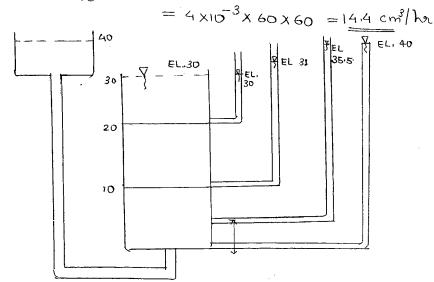
$$4 \times 10^{-3} \times \frac{1}{10} \times 10 = k_{y} \cdot \frac{9}{10} \cdot 10$$

$$k_{y} = 4.4 \times 10^{-4} \text{ cm/s}$$

b)
$$Q_{\infty} = k_{\infty} \cdot \frac{h_{\infty}}{z_{\infty}}$$
, $A_{\infty} \cdot = Q$.
 $= 4 \times 10^{-3} \times \frac{1}{10} \times 10 = 4 \times 10^{-3} \text{ cm}^{3}/\text{s}$

C. Sel).

 $\{\hat{j}_{ij}\}$


()

0

0

0

 Θ

Pressure head = height of water column in piezometer.

gnd Sept, WEDNESDAY

7 EFFECTIVE STRESS

→ Total Stress(0)

It is the stress due to total load.

* Neutral Stress or Pore water Pressure (u)
It is the pressure in the water.

* Effective Stress (0-)

It is the total stress minus neutral stress.

It's also called intergranular pressure. It is the stress which controls the behaviour of soil, shear strength of soil and volume change of soil.

$$\sigma = u + \sigma'$$
 $\sigma' = \sigma - u$

 $\sigma = \frac{w}{\Delta}$

where N > total load (esotornal load + self wt. of soil)

A > total c/s area of soil

u = Ywh

where $h \to pressure head = depth of water in piezometer in the measure of the computed using <math>\sigma$ & σ under the computed using σ & σ and σ is the computed using σ and σ is the computed using σ and σ is the computed using σ

$$\sigma = \frac{W}{A}$$

$$= \underbrace{A.z. \gamma_{sat}}_{A}$$

$$u = Ywh$$

()

0

 \bigcirc

 \bigcirc

0

 \bigcirc

13

1

1 3

 \bigcirc

0

0

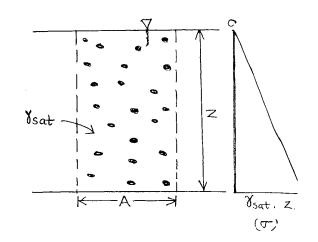
0

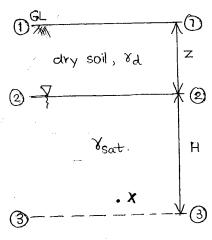
 \bigcirc

 \bigcirc

0

()

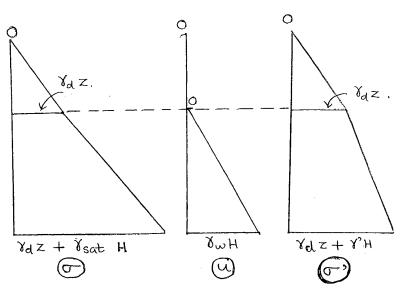

0


()

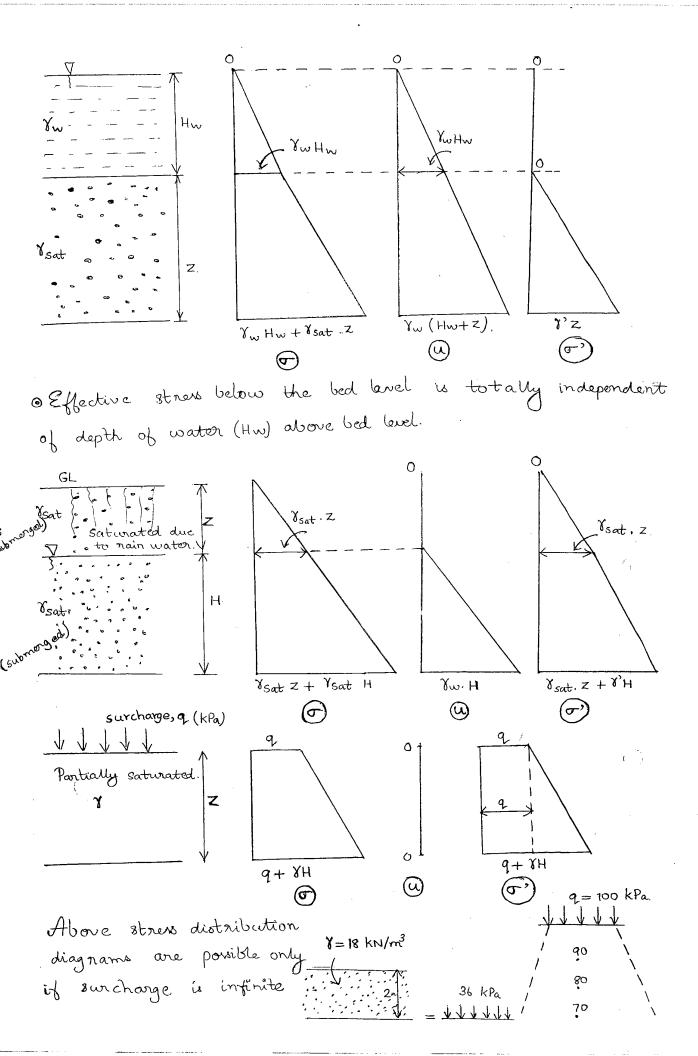
$$\nabla' = \nabla - u$$

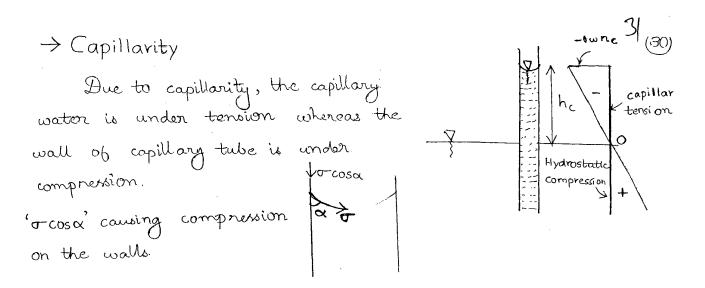
$$= \sqrt[8]{\text{sat } z} - \sqrt[8]{\text{w} z}$$

$$= (\sqrt[8]{\text{scot}} - \sqrt[8]{\text{w}}) z.$$



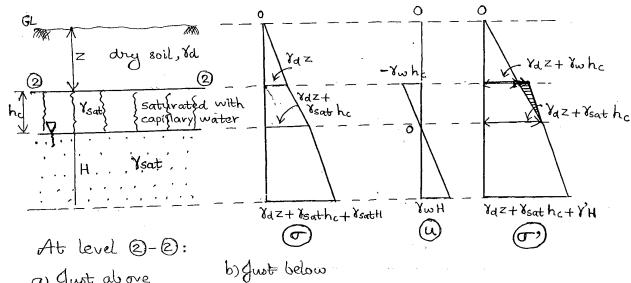
At plane 1)-1):


At plane 2-2:


At plane 3-3:

$$\sigma' = \gamma_d z + \gamma' H$$

- off WT raises, then or & u increase, but o' decreases.
- Of we falls, then or & u decrease but or inoreases.



In soils, capillarity rise, $he \approx \frac{0.3}{d}$ where d-diameter of void (cm) he- capillary height (cm) $d \propto D_{10} \Rightarrow h_c \propto \frac{1}{D_{10}}$

-For gravel & coarse sand, he is negligible. - he is highest for clay.

 $d\alpha e D_{10} \Rightarrow h_{c} \alpha \frac{1}{e D_{10}}$

For clay, effect of size of particle on capillary height is more than that of void natio.

a) Just above

J= YdZ.

o- = 8dz-0=8dz.

o'= 8dz-(8whc)=8dz+8whc

if
$$u = 0$$
 \longrightarrow dry & partially saturated soil if u is +ve. \longrightarrow below WT

Soil molecules act like walls of the capillary tube and they are under compression. . o' incre in capillary zone.

Frost heave 8 Frost boil are disadvantages of capillary active (night time) (day time) (night time)

2.
$$\sigma' = \chi' z$$

 $100 = \chi' z$.
 $\sigma' = \chi' z$.
 $\sigma' = \chi' z$.

3. At centre of clay,
$$\sigma = 21 + 27 \text{sat} = 7.4 \text{ t/m}^{8.2}$$

$$u = 27w = 2 \text{ t/m}^2$$

$$\frac{2m}{\sqrt{\frac{5and}{clay}}}, \frac{8=10}{5at} = \frac{1}{2} \frac{1}{1} \frac{1}{m^3}$$

$$\sigma' = \sigma - u = 7.4 - 2 = \frac{5.4 \text{ t/m}^2}{2}$$

5.
$$\gamma_d = \frac{G \gamma_w}{1 + e} = 18.93 \text{ kN/m}^3$$

$$V_{\text{sat}} = V_{\text{w}} \left(\frac{G+e}{1+e} \right) = 21.78 \text{ kN/m}^3$$

$$\sigma' = 1 \times 18.93 + 2(21.78-10) + 3(20-10) = 72.49 \text{ kN/m²}$$

$$3$$
 $8d = 9$ 2 $e = 0.4; 8sat = 9; G = 2.1$

0

0

0

0

iti Sept, Turday

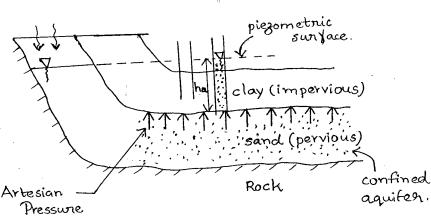
0 8.

Ü

()

Q. 7 b) Calculate of at a depth of 2.4 m below GL for the above capillarity case.

6.
$$\sigma'_{(9m)} = 17 \times 3 + (20 - 9.81) \times 1 + (18 - 9.81) = 102.14 \text{ kN/m}^3$$


$$\sigma = 2 \times 17 + 20 \times 2^{\circ} + 5 \times 18 = 164$$

 $u = 6 \% = 58.86$
 $\sigma' = \sigma - u = 105.14 \text{ kPa}$

$$\Delta \sigma^2 = 105.14 - 102.14 = 3 \text{ kPa}$$

$$\sigma = 2 \text{ Vd} + 0.4 \text{ Vsott}.$$

= $2 \text{ Vd} + 0.4 \times 20 = 42 \text{ kPa}$

$$\sigma' = \sigma - (-u) = 42 + (3 - 2.4) 9.81$$

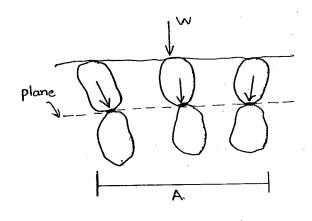
$$= 47.886 \text{ kPa}$$

ha > outesian pressure head.

Antesian pressure = Ywha

Springs are developed only when piezometric surface is above GL.

 $7 = 17 \text{ kN/m}^{3}$ $1 \text{ m. } \frac{7}{5000} = 20 \text{ kN/m}^{3}$ $5 \text{ Ysat} = 18 \text{ kN/m}^{3}$


! 66

42

8. Effective stress at a depth of
$$6m = \% \log \times 4 + \% \mod \times 2 - \% \ln \alpha$$

$$= (19.5 - 10) 4 + (18.5 - 10) 2 - 10 \times 2 = 35 \text{ kPa}$$

b) When
$$ha = 1$$
,
 $\sigma' = 55 - 10 \times 1 = 45 \text{ kPa}$.
 $\Delta \sigma' = \frac{10}{85} \text{ kPa}$

Ac \Rightarrow area of contact. Aw \Rightarrow area of water A \Rightarrow total area of soil. Ac is very small. A = Aw + Ac \approx Aw.

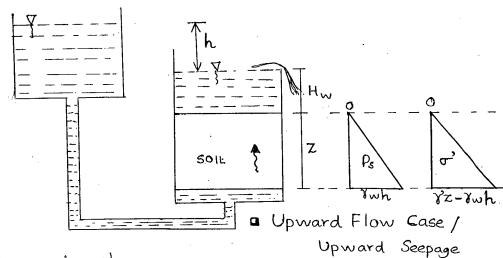
$$W = UAW + \Sigma Nv$$

Dividing by A,

 $W = UAW + \Sigma Nv$

$$\frac{W}{A} = u \frac{Aw}{A} + \frac{\Sigma W}{A}$$

$$\Rightarrow$$
 $\sigma = u + \frac{\Sigma N v}{A}$


Sept,

Comparing above equation with, $\sigma = u + \sigma'$

$$P_{o} = \frac{\Sigma N_{V}}{A}$$

It is equal to the total vertical reaction force transmit at the points of contact of soil grains divided by the total area, including that occupied by water. It is much smaller than actual contact stress. $\left(\frac{\sum Nv}{Ac}\right)$

8. SEEPAGE PRESSURE & CRITICAL HYDRAULIC GRADIENT

At bottom of soil:

()

()

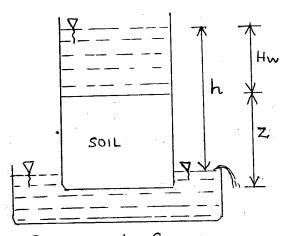
 \bigcirc

 \mathbf{O}

()

()

 \odot


O

$$\sigma = \chi_w + \chi_{sat}, z$$

$$u = \chi_w (z + \mu_w + \mu)$$

$$\sigma' = \sigma - \mu$$

$$= \chi'z - \chi_w + \mu$$

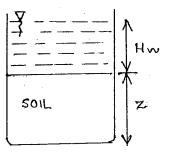
At bottom of soil:

$$\sigma = \delta_w H_w + \gamma_{sat} z$$

$$u = \gamma_w (z + H_w - h)$$

$$\sigma' = \sigma - u$$

$$= \gamma'z + \gamma_w h$$


Downward Seepage.

$$\sigma = \chi_w + \chi_{sat} z$$

$$u = \chi_w + \chi_{sat} z$$

$$u = \chi_w + \chi_{sat} z$$

$$\sigma' = \sigma - u = \chi' z$$

:. when there is seepage,
$$\sigma' = \chi' z \pm \chi_w h$$
use $\frac{-ve}{+ve}$ sign for upward seepage
 $\frac{+ve}{+ve}$ sign for downward seepage

The pressure caused by the seepage water on the soil partie is called seepage pressure.

The seepage pressure always acts in the direction of flow.

Upward Flow: Y'Z' \ XwH ↑

Downward flow: Y'z \ YWH \

Aydraulic Gradient, $i = \frac{h}{z}$.

$$\therefore P_s = \mathcal{V}_w h$$
$$= \mathcal{V}_w i z$$

Seepage force, Ps = Ps.A.
= Yw,i.z.A.

A → area at bottom of soit.

: Seepage force per unit volume of soil = \vi

-> Critical Hydraulic Gradient, ic.

It is the hydraulic gradient at critical condition. $(\sigma'=0)$.

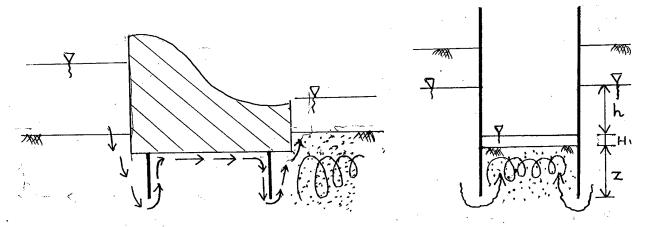
In an upward seepage, $\sigma^2 = \chi^2 z - \chi_w h$.

At critical condition $(\sigma'=0)$; $\forall wh = \chi'z$

$$\Rightarrow \frac{h}{z} = \frac{\gamma'}{\gamma_w}$$

$$\therefore \hat{1}_{c} = \frac{\gamma'}{\gamma_{w}}$$

$$i_c = \frac{G-1}{1+e} = (G-1)(1-n)$$


For soils, ic ≈ 1 . (G = 2.6 - 2.85) & e = 0.6 - 0.85)

 \Rightarrow Quick Sand & Quick Condition or Boiling Condition. Shear strength, $S=c'+\sigma'\tan\phi'$ For whereonless toils, $S=\sigma'\tan\phi'$

In an upward seepage, or = 1'z-1wh.

At critical condition (o'=0), shear strength of cohesionless soil becomes zero and the soil behaves like a boiling liquid. This phenomenon is called Quick Condition. It occurs only in cohesionless soils.

Quick condition is generally observed in fine sand and silts. In the case of gravel and coarse sand, though they are cohesionless, quick sand condition is not common, sin those are highly permeable.

Practically, quick sand condition occurs at the bottom or dls side of hydraulic structures. This is also experienced during construction activities in regions where WT is closer to GL

0

0

0

0

() ()

(_}

0

0

0

O

0

()

* To prevent Quick Condition

- Provide more depth of sheet piles and reduce the hydraulic gradient.

- Keep some depths of water (Hw) in the trench without completely dewatering.

- Lower down the surrounding WT.

* Apply some surcharge load intensity (q) on top of soil, at DIS of hydraulic structures.

Let i be actual hydraulic gradient $(=\frac{h}{Z})$ ic be critical hydraulic gradient of soil $(=\frac{G-1}{1+e})$. It is ic, quick wondition occurs.

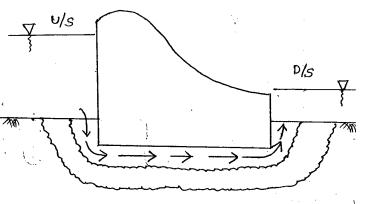
To avoid quick condition, i must be kept less than ic.

To against quick condition, $F = \frac{1}{1}c$

* The minimum head required to cause quick condition, $h = ic \cdot Z$.

9th Sept,

> Piping: (undermining)


-gradual erosion of -

soil partides.

- It occious when $\sigma'=0$.

in case of cohesionless soils.

like fine sand and silt.

Let i_{exit} be hydraulic gradient at exit point. FOS against pipeng = $\frac{i_c}{i_{exit}}$

(34) 35

- provide sheet piles in the foundation to reduce the

hydraulic gradient.

()

[]

()

0

O

0

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc -38

0 1.

0

0

0

0

0

0

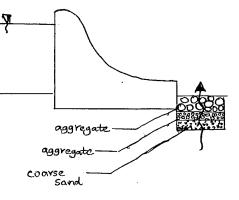
0

 Θ

0

0

0

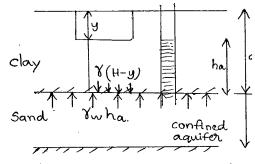

0

3.

- provide inverted fitter on DIS.

- Terzagnis criteria for dosign filter:

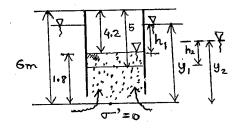
(i) $\frac{(D_{15})_{\text{filter}}}{(D_{15})_{\text{base}}} \ge 5$; to allow escape of water



(ii) $\frac{(D_{15}) \text{ fifter}}{(D_{85}) \text{ base}} \leq 5$; to prevent escape of

At critical condition, downward pr. = uplift pressure. Y(H-y) = wha

$$20(9-y) = 10 \times 6.$$


$$y = 9 - 3 = 6m$$

- $0 2. \quad 4 y = 7 m,$
 - 7 (H-y) = 8wha
 - 20(9-7) = 10 ha
 - :. ha = 4 m.
 - :. Water is to be lowered by 6-4=2m

$$\sigma' = 8^2 z - 8wh_1$$
 $0 = 11 \times 1.8 - 10 \times h_1$
 $h_1 = 1.98 \text{ m}$

when depth of excavation increased to 5m,

$$0 = 11 \times 1 - 10 \text{ h}_2$$

$$h_2 = 1.1 \text{ m}$$

$$y_2 = 1 + 1.1 = 2.1 \text{ m}$$

$$y_1 - y_2 = 3.78 - 2.10 = 1.68 \text{ m}$$

$$\Delta z$$
. $Y_{sat} = \Delta h$. Y_{w}

$$(1.8-1)(11+10) = \Delta y$$
. 10
$$0.8 \times 2.1 = \Delta y$$

$$\therefore \Delta y = 1.68 \text{ m}$$

$$O4 = 0.8$$
, $G = 2.65$, $Z = 10$ cm.
 $I_C = \frac{G-1}{1+e} = \frac{1.65}{1.8} = 0.916$
 $h = I_C$. $Z = \frac{9.16}{1.8}$ cm

05.
$$Q = kiA$$
.
 $0.04 = 2 \times 10^{-3} \times i \times 45$
 $i = 0.44$.
 $h = iz = 0.44 \times 10 = 4.4 \text{ cm}$

06.
$$\sigma' = 8z - 8wh$$

= $(1.93 - 1) \times 10 - 1 (4.4)$
= $4.86 \cdot 9/cm^2$

Ith Sept, O TUESDAY

7

()

0

0

0

0

0

0

0

0

0

0

 \bigcirc

 \bigcirc

0

0

 \bigcirc

0

0

 \mathbf{O}

0

0

0

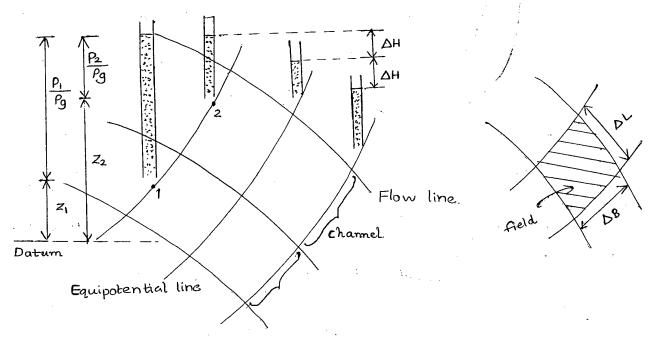
0

0

0

9. SEEPAGE ANALYSIS

* Flow Line or Stream line.


Line which shows the direction of seepage on flow.

* Equipotential Line

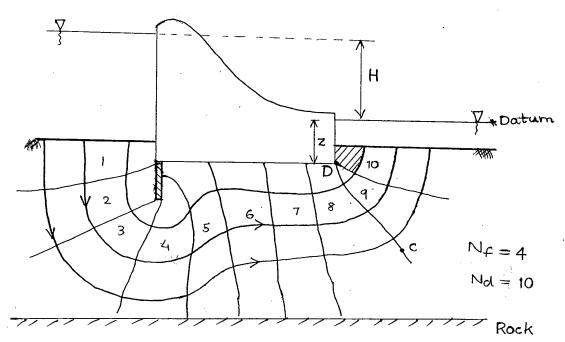
Jotal Head or potential remains the same at all points in an equipotential line.

* Flow net

Network of equipotential lines and flow line.

(i) Total head remains the same at all points in an equipotential line.

(ii) Head loss remains the same blu two adjacent glass line. (DH is same)


(iii) DQ remains the same for channel.

(iv) For every field, AL natio must be same.

AB

* Applications of Flownet

- (i) To find reepage loss note.
- (i) To find seepage pressure
- (iii) To find aplift pressure.
- (iv) To find excit gradient

H = seepage head (or) head causing flow. (on) total head los

important

$$Q = k H \frac{N_F}{N_d} \left(\frac{\Delta B}{\Delta L} \right) ; \text{ for rectangular fields}$$

$$= k H \cdot \frac{N_F}{N_d} ; \text{ for square fields}.$$

; for square fields.

NF > No: of flow channels.

Nd -> No: of potential drops.

 $\frac{Nc}{Nd}$ = shape factor of flow net (a constant)

(ii) Seepage Pressure, Ps

0

 \bigcirc

()

()

0

0

0

 \bigcirc

0

0

0

()

0

0

0

0

0

 \odot

0

0

0

0

0

 Θ

 \mathbf{O}

 \bigcirc

OQ.

h > balance seepage heath at point c.

h = total seepage head -head loss upto point C. = H-hf.

 $h_f = n \Delta H$; $n \rightarrow no$: of potential drops upto c.

DH > head loss blu two adjacent equipotential lines.

$$\Delta H = \frac{H}{Nd}$$
 $\Rightarrow h = H - \frac{nH}{Nd}$

(iii) Uplift Pressure, Pu

hw -> pressure head at point D.

Jotal head = Pressure head + Elevation head.

h = hw + z

 $h_{w} = h_{-}(-z)$

hw = h+z

(iv) Exit Gradient, Pexit

$$i_{\text{exit}} = \frac{\Delta H}{\Delta L}$$

 $\Delta L \rightarrow longth of field at exit. (hatched field)$

A flow net is shown in the tig. It coefficient of perme bility of soil is 2×10^3 cm/s, determine the seepage loss rate in ridday per m length of the weir.

 $N_{f} = 4$ H = 10.5 - 0.5 = 10 m, Z = 0.5 + 0.8 = 13 m

Vd = 14 $K = 2 \times 10^{-3}$ cm/s, $\Delta L = 1.2$ m

point D shown in the fig, take depth of foundation as 0.8 m. Also determine the exit gradient if length of the field at the exit point is 1.2 m.

Scepage },
$$Q = KH \frac{NF}{Nd}$$
.
= $2 \times 10^{-3} \times 10^{-2} \times 10 \times \frac{4}{14} \times 60 \times 60 \times 24$.

$$K = 1.728 \text{ m/day} & Q = 4.937 \text{ m}^3/\text{day.m}$$

Seepage pressure, Ps = Nwh.

$$= 8w \left(H - \frac{nH}{Nd}\right)$$

$$= 10 \left(10 - \frac{9 \times 10}{14}\right) = \frac{35.714}{14} \text{ kPa}$$

Uplift pressure, Pu = 3whw = 3w(h+z). = 10(3.5714+1.3) = 48.714 kPa

Escit gradient, l'escit =
$$\frac{\Delta H}{\Delta L} = \frac{10/14}{1.2} = 0.595 \text{ m}.$$

-> Earthen Embankment

$$Nf = 3$$
 $Nd = 7$
 $Q = KH \frac{Nf}{Nd}$

Phreatic line.

* Phreatic Line:

- topmost flow line
- On the phreatic line, pressure head is zero.
- Parabolic shape

0

 \bigcirc

0

0

O

0

0

0

0

O

0

 \circ

0

0

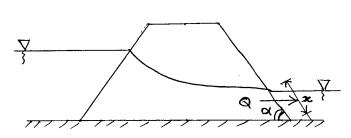
0

0

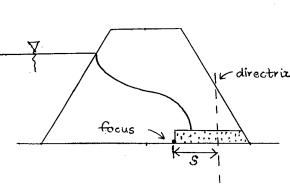
0

O

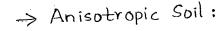
0


 \mathbf{O}

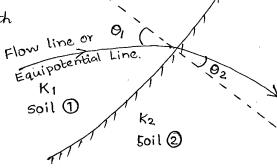
 Θ


0

Q = k.x, sind, tand A = k.x, sind, tand


$$Q = k, \infty, \sin^2 \alpha$$

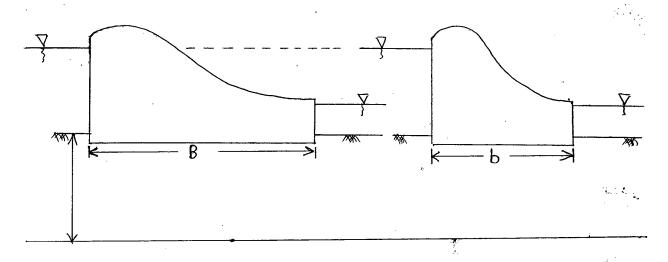
Directria


Kozney's Equation:

Flow lines or equipotential lines are generally smooth lines. But whenever Flo

pormeability changes, there will be deflection.

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{k_1}{k_2}$$



In the case of anisotropic soils (kx > ky), the flow not is to be drawn to the transformed section which is obtained by neducing the horizontal dimensions and keeping vortical dimensions unchanged. The horizontal dimension is reduced by multiplying with a reduction weffecient of

 $\frac{ky}{kx}$. The seepage loss note is computed by taking average parmeability (k') as follows:

$$Q = KH \frac{Nc}{Nd}$$

where
$$K' = \sqrt{K\alpha \cdot ky}$$

$$b = B \sqrt{\frac{ky}{kx}} = 65.8 \text{ m}$$

$$=\frac{65.8}{25}=2.63 \,\mathrm{m}$$

2.
$$K = 100 \text{ D}_{10}^2 = 100 \times (0.01)^2 = 10^4 \text{ cm/s} = 10^6 \text{ res/s}$$
(cm/s) (cm)

$$Q = kH \cdot \frac{Nc}{Nd} = \frac{1.5 \times 10^4 \text{ m/s}}{\text{Not}} \text{ por metre length}$$

3.
$$K = 3.8 \times 10^{-6}$$
; $H = 6.3 \text{ m}$; $N_F = 3$; $N_d = 10$

$$Q = KH \frac{N_F}{N_d} = 7.18 \times 10^{-6} \text{ m/s} \text{ por m length}$$

0.

 Θ

$$O4.$$
 $\Delta H = \frac{H}{Nd} = \frac{18}{9} = 2$

$$n = 3$$
.

:.
$$h_{C} = n \Delta H = 6 m$$

$$h = H - h\rho = 18 - 6 = 12 \text{ m}$$

11th Sept, THURSDAY

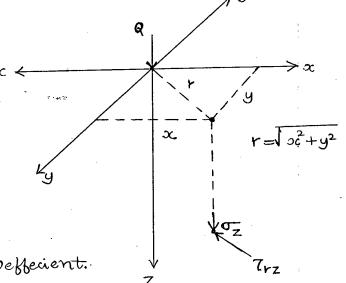
10. STRESS DISTRIBUTION

→ Boussinesq's Theory

* Assumptions:

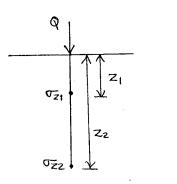
- Soil is homogenous.
- Isotropic soil.
- Semi infinite.
- Elastic medium.
- * Point load.

Homogenous means at different locations, soil has same elastic properties in same direction. (same E, U)
Isotropic means at a single point, soil has same elastic proporties in different directions.


Semi-infinite means material bounded by a horizontal plan and extending to infinite length in all directions to one side of horizontal plane.

Ventical stress,
$$\sigma_{\overline{z}} = \frac{Q}{Z^2} \cdot \frac{3}{2\pi} \left[\frac{1}{1 + \left(\frac{r}{Z}\right)^2} \right]$$

 $\sigma_z = \frac{Q}{z^2}$, k_B .


KB -> Boursinesq Influence Coefficient.

- if r = 0 (vertically below the load). $\sigma_Z = \frac{Q}{Z^2} \cdot \frac{3}{2\Pi}$

$$\Rightarrow \sigma_z \propto \frac{1}{z^2}$$

$$\frac{\sigma_{z_1}}{\sigma_{z_2}} = \left(\frac{z_2}{z_1}\right)^2$$

40

- Radial Shear Stress,

 \bigcirc

0

0

0

0

 \bigcirc

0

O

 \bigcirc

0

0

 \bigcirc

O

()

0

0

0

O

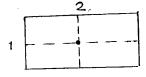
O

O

0

O

 \bigcirc


0

$$7_{rz} = \sigma_{z}, \frac{r}{z}$$

Vertically below the load, 7rz = 0.

A rectangular footing 1 m x 2m 8ize has a load intensity of 10 t/m² on the ground surface. Determine the vertical stress at 3 m below ground level a) below CG of the footing b) below the conner of footing, using Boursinesa's Theory.

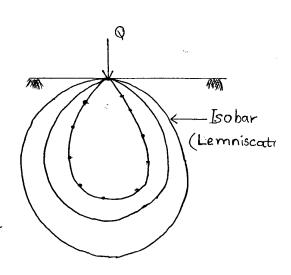
a) below
$$CG$$
 of tooting,
 $Q = 10 \times 1 \times 2 = 20 \text{ t. (acting at CG)}$

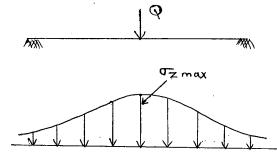
$$\sigma_Z = \frac{Q}{Z^2} \cdot \frac{3}{2\pi}.$$

$$\frac{1}{3^2} \cdot \frac{3}{211} = 1.06 + 1/m^2$$

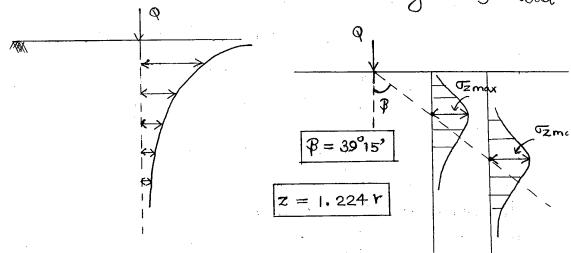
b) below corner of footing,

$$r = x_0 \cdot 5 + 1^2 = 1.11 \text{ m}.$$


$$\sigma_{z} = \frac{Q}{Z^{2}} \cdot \frac{3}{2\pi} \left(\frac{1}{1 + (\frac{r}{Z})^{2}} \right)^{\frac{5}{8}/2} = \frac{20}{q^{2}} \cdot \frac{3}{2\pi} \left(\frac{1}{1 + (\frac{1 \cdot 118}{3})^{2}} \right)^{\frac{5}{2}}$$

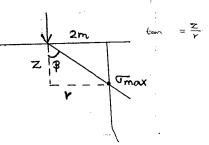

$$= 0.7665 \text{ t/m}^2$$

→ Isobar


At is a curve or contour connecting all points below the ground surface of equal vertical stress.

 $\star \sigma_z$ variation on a Horizontal Plane.

* oz variation on a Vertical Plane Passing through Load



Q If a vertical plane is drown at a radial distance of 2 m away from a vertical load at what depth mose

$$tan \beta = \frac{r}{z}$$

$$Z = \frac{r}{tan \beta} = 1.224 r$$

$$= 1.224 \times 2 = 2.447$$

-> Pressure Bulb.

It is the zone of the soil in which there is significant stress. Beyond the pressure bulb, stress in the soil is regligible. In the case of footings, the depth of the pressure bulb is taken as 1.5 B to 2B (as shown in the fig.) below the

footing

£ 3

0

 \bigcirc

 \bigcirc

0

()

0

0

 \bigcirc

()

 \bigcirc

 \bigcirc

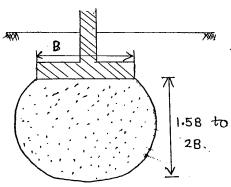
 \bigcirc

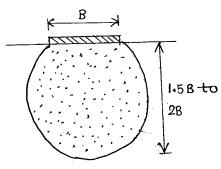
 \mathbf{O}

0

0

 \mathbf{O}

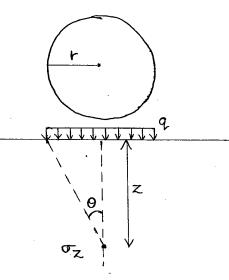

 \ominus


 \bigcirc

္

()

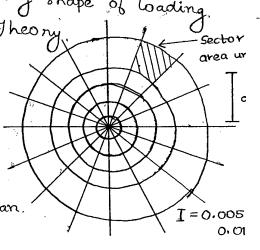
 \bigcirc



-> Circular Loaded Areas.

$$\sigma_{Z} = q \left[1 - \left\{ \frac{1}{1 + \left(\frac{r}{Z} \right)^{2}} \right\}^{3/2} \right]$$

OR


 \mathcal{O} Sept, \rightarrow Newmark's Influence Chart

Obay - to find ox at any point under any shape of loading.

- prepared based on Bousinesq's Theory

- Each sector causes equal stress at the centre of the chart.

I > influence coefficient of chart. $n \rightarrow no$. of sectors covered by footing plan. $q \rightarrow load$ intensity of footing.

Q. In a Newmarks influence chart depth line is 5cm. If the stress is required at a depth of 10m, what 8cale is to be used to draw the fig on the tracing paper?

Scale: Depth line = Z.

$$5 \text{ cm} = 10 \text{ m}$$

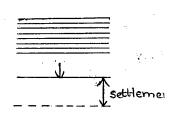
$$1 \text{ cm} = 2 \text{ m}$$

$$1 \text{ cm} = 200 \text{ cm}$$

$$1:200$$

Jotal no. of sectors of chart = No: of concentric circles x no. of radial lines.

If no. of circles = 10 & no. of radial lines = 20
$$I = \frac{1}{10 \times 20} = \frac{0.005}{10 \times 20}$$


-> Westergaard's Method:

* Assumptions:-

(i) Point Load.

(ii) Soil consists of no. of thin layers.

(iii) Applicable for stratified soils (or) sedimentary soils or varved clay

$$\sigma_{Z} = \frac{Q}{Z^{2}} \cdot \frac{1}{\Pi} \left[\frac{1}{1+2\left(\frac{r}{Z}\right)^{2}} \right]^{3/2}$$

- For $\frac{1}{2}$ < 1.5, Boursinesq's eqn gives higher stresses compar to Westergaard's eqn.

q (kPa)

- For $\frac{1}{Z}$ = 1.5 both equations give the same stress value - For $\frac{1}{Z}$ > 1.5, Westergaard's eqn gives slightly higher value compared to Bowsinesq eqn.

-> Newmark's Method.

- to find of at corner of rectangular loaded area

$$\sigma_z = Iq$$

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc

()

()

()

 \mathbf{O}

 \bigcirc

 \bigcirc

 \mathbf{O}

O'

0

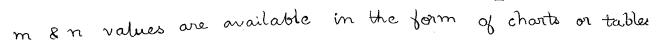
Q

O

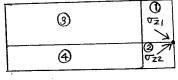
O

0

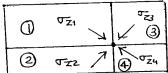
 \bigcirc


0

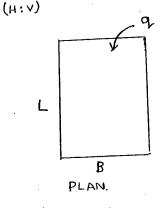
O

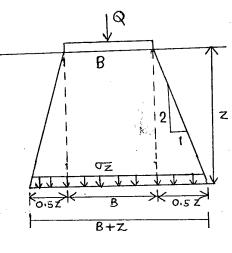

 \bigcirc

I -> influence coeffecient which depends on m & n coeffecients.


$$m = \frac{L}{Z} + 8 = \frac{B}{Z}$$

Pt. outside Footing:




Pt.	
inside	
footing:	t

-> Approximate Method:

- Load dispersion angle is assumed to be as 2v to 1H o 1:2 load dispersion.

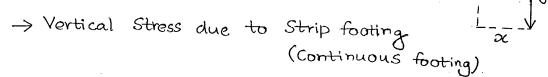
$$\sigma_{Z} = Q$$

$$\frac{(B+Z)(L+Z)}{\text{for nectangulo footing}}$$

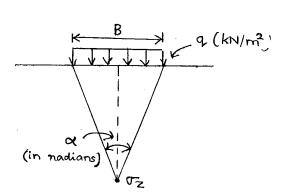
$$\sigma_{Z} = Q$$

$$(B+z)^2$$

for square foot

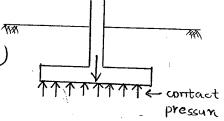

$$\nabla_z = Q$$
(B+z) 1; for continuous footing

$$Q = (B \times 1) q$$
; $Q \rightarrow load$ per unit length.


-> Vertical Stress due to Line Load.

$$\sigma_{Z} = \frac{q}{Z} \frac{2}{\pi} \left[\frac{1}{1 + \left(\frac{x}{z}\right)^{2}} \right]^{2}$$

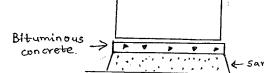
Eg:-Railway lines, sewer pipes etc.


$$\sqrt{z} = \frac{9}{\pi} (\alpha + \sin \alpha)$$
(below co of π)

-> Contact Pressure

Variation depends upon :-

- (i) Type of footing (nigid or flescible)
- (i) Type of 80il.


Rigid Footing (Eg: RCC footing)

(i) uniform settlement.

Flescible Footing

- (i) Non uniform settlement
- (ii) non-uniform contact pressure (ii) Uniform contact pressure

Flescible footing: - oil tank foundation, embankment foundation

 \bigcirc

0

 \bigcirc

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc

 \bigcirc

 \mathbf{O}

0

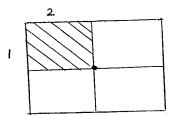
0

 \mathbf{O}

0

 \bigcirc

 \mathbf{O}


 \mathbf{O}

0

) 3.

For the hatched rectangle,

$$m = \frac{1}{Z} = 0.4$$
 $I = 0.0328$ $n = \frac{B}{Z} = 0.2$

$$\sigma_z = 4. \text{ Iq} = 4 \times 0.0328 \times 8 = 1.05 \text{ t/m}^2$$

$$m = \frac{L}{2} = \frac{4}{5} = 0.8$$

$$n = \frac{2}{5} = 0.4$$

$$I = 0.0931.$$

$$\sigma_z = Iq = 0.0931 \times 8 = 0.74 \text{ t/m}^2$$

$$\sigma_{Z_1} = stress under column (1), due to$$

$$Q_1 = \frac{200}{3} = 66.67 = Q_2 = Q_3.$$

$$\mathcal{T} = 2 \, \text{m}, \ \Upsilon = 0. \left(\frac{1}{10^2} \, \sigma_{\overline{z}_1} \right).$$

$$\sigma_{z_1} = \frac{66.67}{4}, \frac{3}{2\pi} = 7.96 \text{ t/m}^2$$

$$\sigma_{Z2} = \frac{Q_2}{Z^2} \cdot \frac{3}{2\pi} \left(\frac{1}{1 + (\frac{y}{Z})^2} \right)^{5/2}$$

$$= \frac{66.67}{4} \cdot \frac{3}{2\pi} \left(\frac{1}{1 + (\frac{3}{2})^2} \right)^{5/2}$$

$$= 0.418 \quad t/m^2 = \sigma_{Z3}$$

$$\sigma_z = \sigma_{z1} + \sigma_{z2} + \sigma_{z3} = 7.96 + 0.418 \times 2$$

$$= 8.796 + 10^2$$

$$\sigma_{Z} = q \left\{ 1 - \left(\frac{1}{1 + \left(\frac{Y}{Z} \right)^{2}} \right)^{3/2} \right\}$$

$$\sigma_{Z} = 20 \left\{ 1 - \left(\frac{1}{1 + \frac{4}{10}} \right)^{2} \right\}^{3/2} - \left[20 \left\{ 1 - \left(\frac{1}{1 + \left(\frac{3}{10} \right)^{2}} \right)^{3/2} \right\} \right]$$

$$= 1.56 \text{ kN/m}^{2}$$

$$5. \quad \nabla_z = 4 \times 100 = 400 \text{ kN/m}^2$$

In
$$\frac{3}{1000 \text{ kN/m}^2}$$

Q. A footing is shown in fig below, $\frac{100}{1000}$

Determine the $\frac{8m}{1000}$

Vertical stress at the $\frac{8m}{1000}$

Point a shown in $\frac{100}{1000}$

point e shown in the fig. at a depth of

3 m. Use the following coefficients.

$$m = 0.5$$
 $n = 2.67$ $I = 0.1365$

$$I = 0.1365$$

$$m = 1$$
 $n = 2.67$ $I = 0.2028$

$$I = 0.2028$$

Stress due to orea A1: (semicircular orea)

$$\sigma_{Z} = \frac{1}{2} \cdot 9 \left(1 - \left\{ \frac{1}{1 + \left(\frac{r}{z} \right)^{2}} \right\}^{3/2} \right) = \frac{1}{2} \times 150 \left(1 - \left(\frac{1}{1 + \left(\frac{1 \cdot 5}{3} \right)^{2}} \right)^{3/2} \right)$$

$$= 21.33 \text{ kN/m}^{2}$$

9=150 KN/m2

Stress due to Az:

$$m = \frac{L}{z} = \frac{8}{3} = 2.67$$

$$n = \frac{B}{2} = \frac{1.5}{3} = 0.5$$

$$T = 0.1365$$

$$\sigma_{Z2} = Iq = 20.47 \text{ kN/m}^2 = \sigma_{Z3}$$

 \bigcirc

 \mathbf{O}

0

O

0

O

0

 \bigcirc

0

O

O

 \bigcirc

 \bigcirc

O

0

 \mathbf{O}

O

O

O

O

O

0

O

 \mathbf{O}

11. CONSOLIDATION

→ Compression

Compressibility is the property of soil due to which compression occurs. Clay has relatively more compressibility compared to gravel, sand and sit.

Compression of soil is due to:-

- compression and escape of air from voids + compaction
- escape of pore water; whereas compression of solid grains and water is negligible. > consolidation

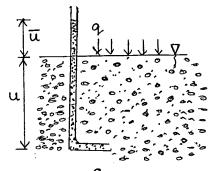
: compression depends upon volume of voids. More the volved voids, more will be the compression.

-> Consolidation

- It is the compression of soil due to expulsion of water under static long term loading.

 It is a slow process.
 - It occurs in low permeable soil.

u = ponewater pressure (or) Hydrostatic pressure.


u = excess pore water pressure (or) nydrodynamic pressure.

Afydro static -> due to self wt.

Afydrodynamic -> due to external load.

 $k_N \rightarrow stibbners$ of water under confined condition $k_S \rightarrow stibbners$ of soil grain structure.

 $k_w >> k_s$

At beginning, $\bar{u} = q$ At end of consolidation, $\bar{u} = 0$

Immediately after Zoading

$$\overline{u} = q$$

$$\sigma' = 0$$

$$\overline{u} + \sigma' = q$$

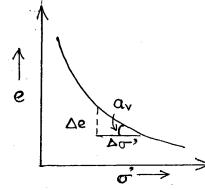
During Consolidation

At the end of consolidation

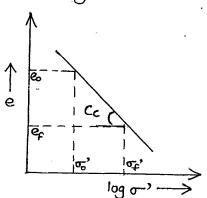
During consolidation, excess pore pressure (ti) decreases, effective stress (o') increases, but total stress (o') remains constant.

th Sept, Turday

During Consolidation,


Proporties which decrease.

U, Permeability, Compressibility, water content, void natio. Properties which increase


o', Yd, settlement, shear strength. Proporties which remains same

J, Sr (= 100%)

 \rightarrow e \rightarrow o' curve.

> e - log or' curve

* Coefficient of Compressibility, as

$$\alpha_{V} = \frac{\Delta e}{\Delta \sigma}$$

Coefficient of compression index,
$$C_c = \frac{e_0 - e_F}{\log \left(\frac{\sigma_F}{\sigma_0}\right)}$$

$$C_{c} = \frac{\Delta e}{\log_{10}\left(\frac{\sigma_{f}'}{\sigma_{o}'}\right)}$$

$$\Rightarrow \Delta e = C_{c} \log_{10}\left(\frac{\sigma_{f}'}{\sigma_{o}'}\right)$$

$$C_c = 0.007 \, (\omega_{L}-10)$$
 ; for remoulded clay $C_c = 0.009 \, (\omega_{L}-10)$; for field consolidation or normally consolidated clay

$$m_V = \frac{\Delta V}{V_0 \cdot \Delta \sigma}$$

It is the volumetric strain per unit change of effective str If soil is laterally confined (area remains same),

$$\frac{\Delta V}{V_0} = \frac{\Delta H}{H_0}$$

We have, V & 1+e.

$$\frac{\Delta V}{V_0} = \frac{\Delta e}{1 + e_0}$$

$$\Rightarrow \frac{\Delta H}{H_0} = \frac{\Delta e}{1 + e_0}$$

O

 \bigcirc

 Θ

 \bigcirc

0

0

0

0

0

 \odot

0

 \mathbf{O}

 \mathbf{O}

0

0

0

0

O

0

O

0

0

 \mathbf{O}

0

0

$$m_{V} = \frac{\Delta V}{V_{0} \cdot \Delta \sigma'} = \frac{\Delta e}{(1+e_{0}) \Delta \sigma'}$$

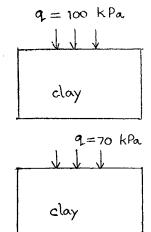
$$= \frac{a_{V}}{1+e_{0}} = \frac{\Delta H}{H_{0} \cdot \Delta \sigma'}$$

*To find ultimate or final consolidation settlement, St or DH

(i)
$$\frac{\Delta H}{Ho} = \frac{\Delta e}{1+e_0}$$

:. ΔH on $S_c = H_0 \left(\frac{\Delta e}{1+e_0}\right)$

(i)
$$\Delta H$$
 or $S_{f_1} = H_0$. $\frac{C_c}{(1+e_0)} \log_{10} \left(\frac{\sigma_{f_1}}{\sigma_{o_1}}\right)$


$$\sigma_{\mathcal{E}}$$
 = $\sigma_{\mathcal{O}}$ + $\Delta \sigma$

or's original or initial effective stress in the clay (due to self weight) at the centre of clay

(iii)
$$m_V = \frac{\Delta H}{Ho. \Delta \sigma}$$

(ii) nd equation is always preferred. because you a given soil, av & my are not constant; these decrease with increase in o. But Cc is always constant.

- -> Depending upon Stress history, the States of Soil are:
 - Normally Consolidated soil. (NC Soil)
 - Over Consolidated soil (OC soil)
 - Under Consolidated soil (UC soil)

0

 Θ

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

0

0

О

 \bigcirc

0

0

0

0

0

 \bigcirc

O

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

O

O

 \mathbf{O}

O

O

 \bigcirc

 \bigcirc

 \bigcirc

At the end of consolidation, $\sigma' = 100$ kPa (Pre consolidated stress, $\sigma_c' = 100$ kPa)

46

Overconsolidated soil (on) preconsolidated soil.

Overconsolidated soil: ib the soil has ever been subjected to a pressure greater than oscisting pressure.

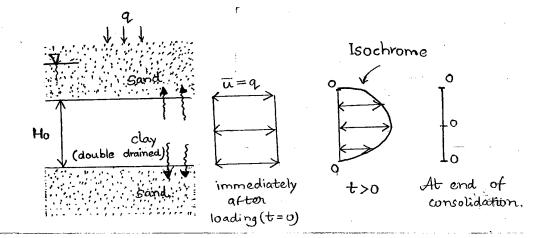
Normally consolidated soil: ib the soil has never been

subjected to a pressure more than existing pressure.

Un der consolidated soil :- when the soil is under consolidation.

→ Over Consolidation Ratio, OCR

$$OCR = \frac{\sigma_c}{\sigma}$$

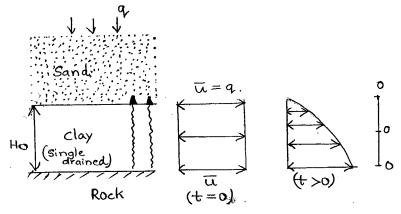

It is the natio of preconsolidation stress to present effective stress in the soil.

For NC soil, OCR = 1.

For OC soil, OCR > 1

For UC soil, OCR < 1

> Terzaghi's Theory of 1-D Consolidation:


Water tends to escape in vertical direction (to sand how higher permeability), one direction, : called 1D consolidation. Water near the sand escapes first (lesser drainage distance) and u=0. Since there is sand in both sides of clay, it is called double drained clay.

* Slope of Frochrome = $\frac{\overline{u}}{z} = \frac{h}{z} = i = hydraulic gradie.$ But \overline{u} varies with time and depth. : slope is not constant.

* Drainage path, d

 $d = \frac{Ho}{2}$; For double drained condition d = Ho; for single drained condition

Drainage path is the max distance that the water has to travel to escape.

$$\frac{\partial \overline{u}}{\partial t} = \frac{k}{m_V \chi_W} \frac{\partial^2 u}{\partial z^2}$$

DIFFERENTIAL EQUATION
OF 1D CONSOLIDATION

$$\frac{\partial \overline{u}}{\partial t} = C_{v} \cdot \frac{\partial^{2} \overline{u}}{\partial z^{2}}$$

-> Coefficient of Consolidation, Cv

$$G_{v} = \frac{k}{m_{v} v_{w}}$$

Units: m²/sec, cm²/sec

$$\frac{\partial \overline{u}}{\partial t} = C_{V} \frac{\partial^{2} \overline{u}}{\partial z^{2}}$$

Solution is given in terms of (i) Time factor, Ty
(ii) Degree of consolidation, U

* Jime factor,
$$Tv = \frac{Cvt}{d^2}$$

t -> time of consolidation.

 \bigcirc

()

O.H

О

 Θ

 \bigcirc

* Degree of consolidation,
$$V = \frac{S}{S_f} \times 100$$

 $S \rightarrow$ settlement occurred upto certain time, t $S_F \rightarrow$ final settlement.

At beginning,
$$S=0$$
; $U=0$ $0 \le U \le 100\%$
At end, $S=S_F$; $U=100\%$

Also,
$$U = \frac{\text{dissipated excess pone pressure}}{\text{initial excess pone pressure}} \times 100$$

$$= \frac{\overline{u}_i - \overline{u}}{\overline{u}_i} \times 100$$

 $\overline{u}_i \rightarrow initial$ excess pore pressure.

TI -> escers porce pressure after certain time, t

on
$$U = \frac{\sigma'}{\overline{u_i}} \times 100$$
; $\sigma' = \overline{u_i'} - \overline{u}$

* Relation blw U&Tv

(i)
$$T_V = \frac{T\Gamma}{4} \left(\frac{U\%}{100} \right)^2$$
; $U \le 60\%$

(ii)
$$T_{V} = 1.781 - 0.933 \log_{10}(100 - 0\%); U > 60\%$$

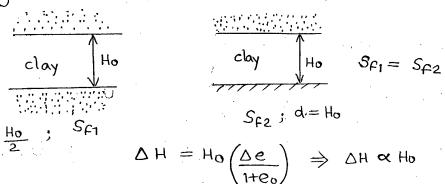
- → Consolidation Test (Oedometer Test)
 - undist urbed sample is used
 - diameter of sample ≥ 3x thickness.
 - * To find 'e' in Consolidation test:
 - (i) Change in void natio method;

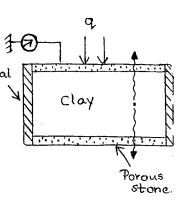
Jinal most void ratio, ef = wf 6

$$\frac{1+6t}{\nabla e} = \frac{Ht}{\nabla H}$$

Initial void notio, eo = ef ± De

(ii) Height of Solids method:- $H_s \rightarrow \text{Height of Solids}$ $H_s = \frac{\text{Va}}{\text{GYw.A}}$


$$e_0 = \frac{H_0 - H_S}{H_S}$$


$$H_{f} = H_{0} - \Delta H$$

$$e_{f} = \frac{H_{f} - H_{s}}{H_{s}}$$

• For same loading and same clay properties, the ultimate consolidation settlement remains the same for both double drain clay condition and single driained clay condition.

• For a given clay, Cy is constant (assumed).

For a given clay, to undergo same degree of consolidation the time required for a doubte drained condition is 1 th time required for a single drained condition

$$T_V = \frac{C_V t}{d^2}$$

If Cv & U (or Tv) are same,
$$t \propto d^2 \Rightarrow \frac{t_1}{t_2} = \left(\frac{d_1}{d_2}\right)^2$$

$$+ \alpha \frac{d^2 m_V}{k}$$

$$t = \frac{T_V d^2}{C_V} = \frac{T_V d^2 m_V \gamma_W}{k}$$

: For same degree of consolidation, t \(\alpha \frac{d^2 m_V}{k}.

$$\frac{t_2}{t_1} = \left(\frac{d_1}{d_1}\right)^2 \left(\frac{m_{v_2}}{m_{v_1}}\right) \frac{k_1}{k_2}$$

 Ω_{58}

01

0

0

0

() 15th Sept,

0

 \bigcirc

 \bigcap

()

0

0

From 1 to 2
$$kg/cm^2$$
, $\Delta H = 1 cm \Rightarrow \Delta \sigma' = 2 - 1 = 1$; $\frac{\sigma f'}{\sigma_0} = \frac{2}{1} = 2$

From 2 to 4 kg/cm², $\Delta H = ? \Rightarrow \Delta \sigma' = 4-2=2; \frac{\sigma_{F}}{\sigma_{G}} = \frac{4}{2} = 2$

$$\Delta H = H_0 \cdot \frac{C_c}{1 + e_0} \log_{10} \left(\frac{\sigma_c}{\sigma_{0}} \right)$$

Since $\frac{\sigma_{7}}{\sigma_{h}}$, notion is same, DH is also same.

$$\therefore \Delta H = 1 \text{ cm}$$

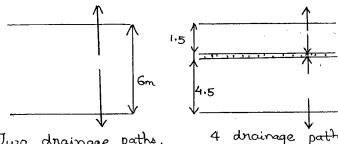
O 02. In $t_1 = 4$ years; $S_1 = 80$ mm $t_2 = 9$ years; $S_2 = 9$

$$T_{V} = \frac{C_{V}t}{d^{2}}$$

$$\frac{\pi}{4} u^2 = \frac{Cvb}{d^2} \implies t \propto u^2$$

ears; $S_1 = 80 \text{ mm}$ $S_1 = 80 \text{ mm}$

$$u = \frac{S}{S_F} \Rightarrow u \propto S.$$


$$\therefore \left[t \propto s^2 \right]$$

$$\frac{t_1}{t_2} = \left(\frac{S_1}{S_2}\right)^2$$

 $\frac{t_1}{t_2} = \left(\frac{S_1}{S_2}\right)^2$ (valid only when u < 60%)

$$\frac{4}{9} = \left(\frac{80}{52}\right)^2 \implies S_2 = \frac{80 \times 3}{2} = \underline{120 \text{ mm}}$$

3.

Two drainage paths.

4 drainage paths

But ultimate settlement remains the same

4,

$$H_0 = 4 m$$
, $C_c = 0.36$

$$C_0 = 0.92$$

$$\nabla_0' = \left(2 + \frac{4}{2}\right) \vec{k} = 37.2 \text{ kPa}$$

$$\Delta \sigma^2 = \frac{Q}{(B+Z)^2}$$

Z: distance blu pt. where boad is acting 8 pt. where band is required.

$$\Delta \sigma^2 = \frac{500}{(B+2)^2}$$

$$S_{F} = H_{0} \cdot \frac{C_{C}}{1 + e_{0}} \log_{10} \left(\frac{\nabla_{0}' + \Delta \sigma'}{\nabla_{0}'} \right)$$

$$0.12 = 4x \frac{0.36}{1+0.92} \log_{10} \left(\frac{37.2 + \frac{0.500}{(B+2)^2}}{37.2} \right)$$

$$\Rightarrow$$
 B = 3.5m

For clay,
$$sat = sw (6+e_0) = 1.71 \text{ t/m}^3$$
.

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

0 07.

$$S_{f} = 4 \times \frac{0.495}{1+1.325} \log_{10} \left(\frac{3.2+4}{3.2} \right) = \frac{29.8 \text{ cm}}{1+1.325}$$

$$U_1 = 25 \%$$
, $t_1 = 10$ min

$$u_2 = 50\%$$
, $t_2 = 9$

$$\frac{t_1}{t_2} = \left(\frac{25}{50}\right)^2 \qquad \left(t \propto u^2\right)$$

$$\frac{10}{t_2} = \frac{1}{4} \Rightarrow t_2 = 40 \text{ min}$$

$$U = \frac{\overline{u_i} - \overline{u}}{\overline{u_i}} \times 100 = \frac{2 - 0.6}{2} \times 100 = \frac{70\%}{2}$$

$$U = \frac{S}{Sc} \times 100$$

$$\frac{70}{20} = \frac{S}{20} \times 100 \implies \frac{S = 14 \text{ mm}}{20}$$

$$\theta$$
0 or $t \propto \frac{d^2m_V}{V}$

$$\frac{t_2}{t_1} = \left(\frac{d_2}{d_1}\right)^2 \left(\frac{m_{V2}}{m_{V1}}\right) \cdot \left(\frac{k_1}{k_2}\right)$$

$$= \left(\frac{2d_1}{d_1}\right)^2 \left(\frac{4m_{V_1}}{m_1}\right) \left(\frac{k_1}{n_1}\right) = \frac{16}{3}$$

$$= \left(\frac{2d_1}{d_1}\right)^2 \left(\frac{4m_{V_1}}{m_{V_1}}\right) \left(\frac{k_1}{3k_1}\right) = \frac{16}{3} \implies t_2 = \frac{16}{3} \times 15 = 80 \text{ ye}$$

 $H_1 = 20 \text{ mm}$

$$d_1 = \frac{H_1}{2} = 10 \text{ mm}.$$

U1 = 50%

ti = 45 min.

H2 = 10 mm

$$d_2 = \frac{H_2}{2} = 5000 \text{ mm}$$

$$U_2 = 50 \%$$

For same Cu & u, tade

$$\frac{t^2}{t_1} = \left(\frac{d_2}{d_1}\right)^2$$

$$\frac{t^2}{45} = \left(\frac{5000}{10}\right)^2$$

$$t_2 = 21.4$$
 years

10. If field clay is single drained = 4 + times of 21.4 years= 85.6 years

Q. 11. In the laboratory..... Find the time required to undergo 70% consolidation of a field clay of 3m thick and double drained?

Lab Specimen:

HI = 25 mm

 $d_1 = H_1 = 25 \text{ mm (single drained)}$

U1 =50%

t1 = 11 min.

Field Clay:

$$H_1 = 3 m$$

 $d_1 = \frac{H_1}{2} = 1.5m = 1500 \text{ mm} (do uble drains)$

 $U_2 = 70 \%$

For same C_V , $t \propto d^2 T_V$. (same soil)

$$\frac{t_2}{11} = \frac{0.405}{0.197} \times \sqrt[3]{\frac{1500}{25}}^2$$

) l2. Double drainage

Single drainage

Н

 $d_1 = \frac{H}{2}$

 $d_i = H$.

0

()

to = 5 years.

tz=5 years. $S_2 = 9$

()

 $S_1 = 9 \text{ cm}$ Sp = 45 cm

Sr = 45 cm.

0

0

0

0

 $T_V = \frac{\pi}{4} C^2$

 $\frac{C_{vt}}{d^2} = \frac{TT}{4} v^2 \implies V \propto \frac{1}{d}$

0

0

 $U \propto S \Rightarrow S \propto \frac{1}{d}$ (when u < 60%).

0 0

 $\frac{S_1}{S_2} = \frac{d^2}{d\mathbf{1}}$

0 0

 $\frac{q}{S_0} = \frac{2H}{RH} \implies S_2 = \frac{4.5 \text{ cm}}{2}$

 \bigcirc

 $t_1 = 4 \text{ years.}; S_1 = 80 \text{ mm}$

0 0 13.

For $t_2 = 9$ years; $S_2 = 9$

0

 $U_1 = \frac{S_1}{S_C} \times 100 = 26.67 \%$

0

0

 $T_{V1} = \frac{\pi}{4} \left(\frac{U_1}{100} \right)^2 = 0.0558$

0

 $T_V = \frac{C_V t}{d^2} \Rightarrow t \propto T_V$

0

 $\frac{t_2}{t_1} = \frac{Tv_2}{Tv_1}$

O 0

 $\frac{q}{\Delta} = \frac{Tv_2}{0.0558} \Rightarrow Tv_2 = 0.1255$

0

O

From the table given, $Tv_2 = \frac{TI}{4} \left(\frac{U_2}{100}\right)^2$

0

0.125 = $\frac{11}{4} \times \left(\frac{U_2}{100}\right)^2 \Rightarrow U_2 = 40\%$

0 O

0

 $0.4 = \frac{S_2}{300} \implies S_2 = \frac{120}{120} \text{ mm.}$

$$\frac{Tv_2}{Tv_1} = \frac{t_2}{t_1}$$

$$U_2 = \frac{S}{300} \implies S = 300 \times 0.65 = \underline{195 \text{ mm}}$$

15
$$U_2 = \frac{S_2}{S_F} \times 100 = 70\%$$

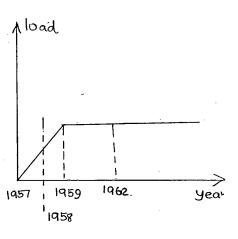
$$\frac{t_2}{t_1} = \frac{T_{V2}}{T_{V1}} \Rightarrow \frac{t_2}{4} = \frac{0.403}{0.0558}$$

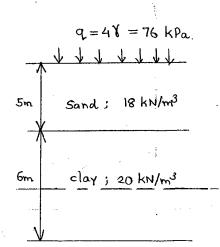
:.
$$t_2 = 28.8$$
 years

$$t = 1962 - 1958 = 4 \text{ years}$$
; $S_1 = 90 \text{ mm}$.

$$\frac{t_2}{t_1} = \left(\frac{S_2}{S_1}\right)^2$$

$$\frac{q}{4} = \left(\frac{S_2}{q_0}\right)^2$$


$$S_2 = 135 \text{ mm}$$


$$= 76 + 5 \times 18 + 3 \times 20$$

$$= 226 \text{ kPa}$$

Jotal
$$U = Ust + \overline{U}$$

= $(5+3)10+76$
= 156 KPa

$$\sigma^2 = 226 - 80 = 146 \text{ kPa}$$

$$\sigma'$$
 (immediately after) = $57' + 38'$
loading = $5 \times (18-10) + 3(29-10)$.

$$= 70 \text{ kPa}$$

$$\sigma^2$$
 (after many years) = $\sigma_0^2 + D\sigma = 70 + 76 = 146 \text{ kPa}$

-> Recompression Index, CR

 \bigcirc

(-)

 \bigcirc

()

()

 \bigcirc

 Θ

Slope of recompression curve (Occ) is called CR.

$$C_R \approx \frac{1}{5} C_c$$

Straight line portion is called

Virgin compression or NCC.

uce cannot be marked in "e-logo" as equan void natios used (ie void ratio at the end of consolidation)

20.
$$S_f = H_0 \times \frac{C_c}{1+e_0} \times \log_{10} \left(\frac{\sigma_f}{\sigma_0}\right)$$
 e e Alone eqn is used only when e-logo' curve is a straight line. $\log \sigma$

:
$$S_{f} = Ho$$
. $\frac{C_{R}}{1+e_{o}} \log_{10} \frac{\sigma_{c}'}{\sigma_{o}'} +$

$$= 5 \times \frac{0.03}{(1+0.9)} \log_{10} \left(\frac{120}{70}\right) + 5 \times \frac{0.27}{(1+0.9)} \times \log_{10} \left(\frac{150}{120}\right)$$

$$0 = 0.087 \text{ m} = 87.34 \text{ mm}$$

-> Stages of Consolidation

(i) Initial Consolidation

Settlement that occurs immediately after bading due to elastic nature and escape of air.

(ii) Primary Consolidation

Due to expulsion of pore water

(iii) Secondary Consolidation (Creep)

due to readjustment of particles and escape

of some double layor water or highly viscous water.

-> Elastic (or Immediate) Settlement:

$$S_i = \frac{q_n}{E_S} \cdot B \left(1 - \mu^2\right) \cdot I$$

where $q_n \rightarrow \text{net pressure intensity.}$

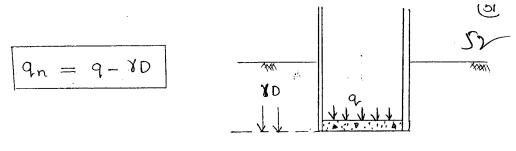
Es -> Young's Modulus of Soil.

4 -> Poissons Ratio of Soil.

B -> Characteristic linear dimension

(usually width of footing or diameter of footing)

I -> Influence factor


Influence factor, (I) depends on stiffness, shape, $\frac{L}{B}$ ratio of footing and location of point.

NOTE: The immediate settlement of a rigid footing is about 0.8 times the maximum settlement of an equal flexible footing (at the centre).

For a circular footing,

— Flescible Centre = 1.0 Corner = 0.64 Average = C

— Rigid 0.8

Oil tank foundation
$$\rightarrow$$
 flexible footing,
 $I_{(centre)}$ for circular flexible footing = 1.
 $q_n = q - \gamma_D = 250 - 22 \times 3 = 184 \text{ kN/m}^2$

$$B = diameter = 20 m.$$

021.

0

()

()

()

0

0

0

0

0

O

0

0

 \bigcirc

 \bigcirc

 \bigcirc

O

O

O.

O

 \bigcirc

0

 \bigcirc

()

 \bigcirc

୍ର ଷ୍.

$$\Rightarrow Si = \frac{9n B(1-u^2) I}{E_S} = \frac{184 \times 20(1-0.45^2) \times 1}{6 \times 10^4}$$

$$= 0.04891 m = \frac{489 mm}{10}$$

The average effective overburden pressure on a 10m thick saturate clay layer is 150 kPa. Consolidation test on an undisturbed soil sample taken from clay layer showed that void ratio decreased from 0.6 to 0.5, By increasing the stress intensity from 100 kPa to 300 kPa. Determine the initial void ratio of clay layer. Also determine the total consolidation settlement of the clay layer due to construction of a structure imposing additional stress intensity of 200 kPa.

$$C_{c} = \frac{\Delta e}{\log \frac{\sigma c^{2}}{\sigma_{o}}} = \frac{0.6 - 0.5}{\log_{10} \left(\frac{300}{100}\right)} = \frac{0.209}{0.209}.$$

$$C_c = 0.6 - e$$
 $\Rightarrow e = 0.563$

$$\Delta H = H_0 \cdot \frac{C_c}{1+e_0} \log_{10} \left(\frac{\sigma_0' + \Delta \sigma'}{\sigma_0'} \right) = 10 \times \frac{0.209}{1+0.568} \left(\frac{150 + 200}{150} \right)$$

$$= 0.492 \, \mathrm{m}$$

12. COMPACTION

- Compaction of soil is due to compression and escape of air.
 - It is a quick process.
 - under short term loading, moving loads etc
- -> Effect of Compaction:
 - shear strength increases.
 - compressibility de creases
 - permeability decreases
- During compaction, some amount of water is generally added to have a lubrication effect blue the particles to facilita easy compaction.
- → Compaction Tests:

The purpose of compaction test is:

- to find ome
- to find compative energy,
- 1. Is Light Compaction Test (Std. Proctor's test)
 This test is performed for ordinary roads,

earther dams.

2. Is Heavy Compaction Test (Modified Proctor's test.

This test is performed for escorersways, runways e

Heavy test	Wt. of Kammer 4.90 kg	45 cm	No: of blow per each layer 25	100:06 (54) Layers. 53
Light test	2.60 kg	31 cm	25	3

© Jotal energy ratio =
$$\frac{4.90 \times 45 \times 25 \times 5}{2.60 \times 81 \times 25 \times 3} = \frac{4.55}{2.60 \times 81 \times 25 \times 3}$$

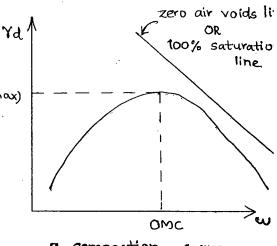
Mould Capacity = 1 L generally or 2.25 L.

(if soil has % reto
on 4.75 cmm > 20%;

For 1 L mould -> 25 blows per each layer) for both tests.

For 2.25L mould -> 56 blow per each layer)

water


V = vol. ob 80il. V = vol. ob 80il. $V = \frac{W}{V}$

 $W \rightarrow \text{obtained by over drying.}$ $Vd = \frac{Y}{1+W}$

The test is repeated for water Yd contents and I'd is obtained in each case. A graph is Yd(max) plotted blw Yd & w.

Mould.

OMC: Optimum Mourture is the evater content at which mase, dry density is obtained.

a compaction curve

$$8d = \frac{(1-na)68w}{1+w6}$$
; $na = \%$ air voids \rightarrow Equation of Compaction cur (Ydmax) theo. $= \frac{68w}{1+w6} \rightarrow$ Equation of Zero Air Voids line

O

0

(<u>}</u>

1

 \bigcirc

0

0

()

0

0

0

0

0

()

()

 \bigcirc

()

()

Ç

 \bigcirc

Ó

0

()

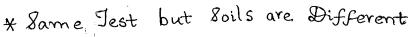
0

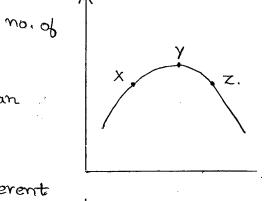
O

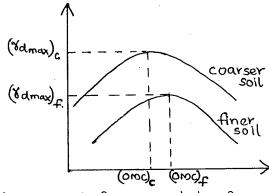
 Θ

 \mathbf{O}

()


 \mathbf{O}

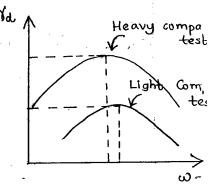

 \bigcirc


- Zero air voids line is used to compare and understand the level of compaction.

- K at Y is least (as least no. of voids due to optimum compaction)

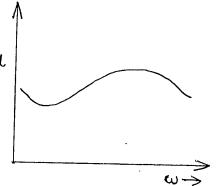
- k at z is relatively loss than k at x.

Finer soil has relatively more one and low (Yd)max compared to coarser soil.


Finer soils have more surface area and hence more onc. Also, $Vd = \frac{GVw}{1+e} \Rightarrow$ finer soils having larger void notio (e) will be having lesser $(Vd)_{max}$.

* Same soil but tests are Different.

As the compactive energy increases, Vdmax increases but one decreases.


-> Factors affecting Compaction:

- _ water content (w.c)
 - compactive energy
 - type of soil.

In the case of pure sand without fines, there is no well defined one and whe were is shown below. :. For the above soil, the compaction curve is not useful. Vd. Relative density (or density index) is

used to indicate the level of compaction achieved.

Dry of Optimum

£ \$

0

0

 \bigcirc

O

O

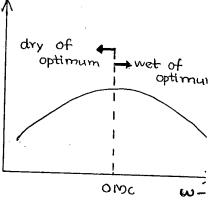
0

0

0

()

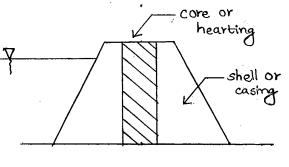
()


 \bigcirc

- Flockwent struct.
- more shear strength
- -more swelling type

Wet of Optimum

- dispersed struct. 1 - less shear strongth id
- less swelling type.


- To avoid swelling of soil (below the floors, pavements, core of earther dam), is compacted wet of optimum

- To have more strength (road embankments & casing of earthen dams), the soil is compacted dry of optimum.
 - Placement water content :- w/c actually used at

-> Earthen Dam:

- * Core :-
 - to check seepage
 - made up of importmeable soil
 - (clay) - wet of optimum
- * Shell :-
 - to provide stability
 - -made up of soil other than clay.
 - dry of optimum.

- -> Compaction Equipment:
 - Jampers -> manual compaction (for inaccessible areas trenches, behind notair
 - Smooth wheel roller -> to have smooth surface.
 - Pneumoticy Tyred roller .- for all soils
 - Sheep foot roller. -> best suitable for clays
 - ribratory roller -> best suitable for sands

Kneading action: best for compaction of clay. Vibratory: best for compaction of sand.

-> Relative Compaction

Relative compaction =
$$\frac{\text{Vd of field}}{\text{Vd_{max} in lab}} \times 100$$

Generally 90-95% is acceptable.

-> Proctor's Needle

To measure in-situ w.c and Id (approximate)

P- 64

O1.
$$\% = 1.8 \text{ g/cc}$$
; $\omega = 16\%$; $G = 2.65$

$$7d = \frac{8\omega 6}{1+e}$$

$$1.8 = \frac{2.65}{1+e} \Rightarrow e = 0.472$$

$$e = \frac{\omega G}{S_V} \Rightarrow 0.472 = \frac{0.16 \times 2.65}{S_V}$$

:. $S_V = 89.7\%$

$$a_c + S_r = 100\%$$
 $n_a = na_c$
 $a_c = 10.3\%$ $= \frac{e}{1+e} \cdot 10.3 = \frac{3.27\%}{1}$

$$(7d \text{ max})$$
 theo. = $\frac{G \text{ Nw}}{1+\text{wG}} = \frac{1.86 \text{ g/cc}}{1}$

2. Not of soil = volume of cutter
$$= \frac{\pi}{4} d^2 h =$$

{ }

0

()

0

()

()

()

0

0

0

0

0

0

 \bigcirc

 \bigcirc

0

0

 \bigcirc

0

0

O

0

0

 Θ

0

 \mathbf{O}

O

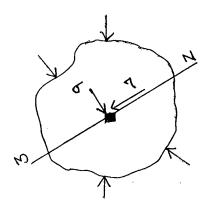
0

 \bigcirc

O-68

O 13.

$$V_d = \frac{V}{1+\omega} = \frac{W/V}{1+\omega} = \frac{13.65}{1+0.122}$$


$$\Upsilon d = \frac{G \Upsilon w}{1 + e}$$

$$12.16 = \frac{2.65 \times 9.81}{1+e} \Rightarrow e = \frac{1.136}{1}$$

$$S_r + a_c = 100\%$$

16th Sept, Tuesday

13. SHEAR STRENGTH

or on -> Normal Stress.

7. -> Shear Stress

3-Principal planes, I^n to each other 3-Principal Strewes, I^n to each other.

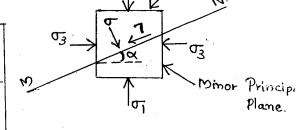
of, oz, oz -> Principal stresses.

(7=0 in Principal plan

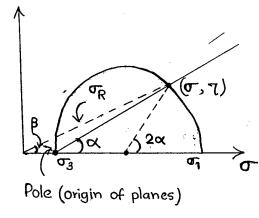
J > J ≥ J ≥ J 3

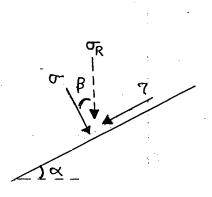
Ji → Major Principal Stress

02 → Intermediate Principal Stress


J3 → Minon Principal Stress

Major Principal Plane


Analytical:


$$\sigma = \frac{\sigma_1 + \sigma_3}{2} + \frac{\sigma_1 - \sigma_3}{2} \cos 2\alpha$$

$$7 = \frac{\sigma_1 - \sigma_3}{2} \sin 2\alpha$$

Graphical: (Mohr Circle)

$$\sigma_{R} = Resultant stress = \sqrt{\sigma^{2} + 7^{2}}$$

 β = angle of obliquity (angle blw σ & σ_R)

· For failure plane, angle of obliquity will be maximum TZ S -> shear strength or shear resistance 7 -> shear stress $7_f \rightarrow failure shear stress.$ - If 7 < 5, no shear failure. -> Coulomb's $S = C + \sigma \tan \phi$ or -> Normal stress on the plane $c \rightarrow Cohesion$ $\phi \rightarrow$ angle of internal friction (or) angle of shearing resistance. • Angle of Repose: - Natural slope of a soil heap. angle of repose Angle of repose & angle of shearing resistance are not equal to each other. Theop of soil. However, for a loose sand, these two are meanly equal Angle of Shearing Resistance: angle of indination of failure

0

0

0

0

0

 \mathbf{O}

0

 \bigcirc

0

0

0

0

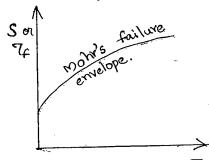
O

0

O

0

0


O

-> Mohr's Theory

- Soll fails essentially due to shear.
- Failure shear stress depends on o.
- oz has no effect on the behaviour of soil

$$S = f(\sigma)$$

- As por Mohris theory, Mohris failure envelope is curvilinear

* Nowadays,

-> Terzaghi's Concept

- 5 depends on effective normal stress (0)

$$\Rightarrow$$
 $S = C' + \sigma' \tan \phi'$

c' -> effective cohesion (or drained cohesion)

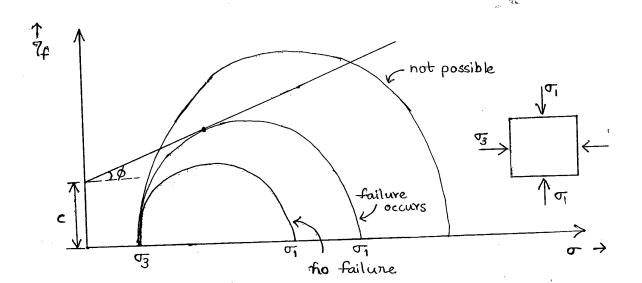
 $\phi' \rightarrow$ effective angle of internal friction (or drained angle of internal friction)

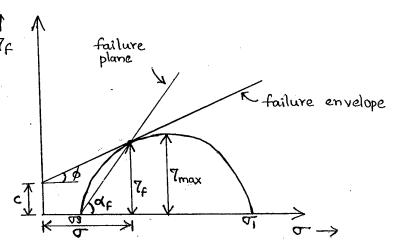
- Anothor equation:

$$S = Cu + \sigma tan \phi u$$

o → total normal stress.

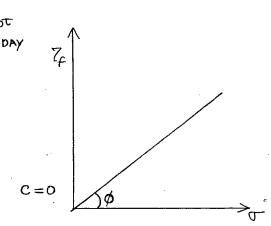
Cu-) apparent cohesion (or) total cohesion (or) undrained cohesion.

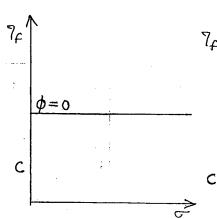

Φι → apparent engle of int. friction (or)
 total angle of int. friction (or)
 undrained angle of int. friction.

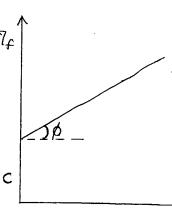

$$S = C + \sigma \tan \phi$$

$$S = c' + \sigma' \tan \phi'$$

- $-c' \otimes \phi'$ are called effective shear strength parameters?
- used for drained. conditions of soil


- interms of total stress.
- Cu 8 pu are called total shear strength parameters?
- used for undrained conditions of soil.



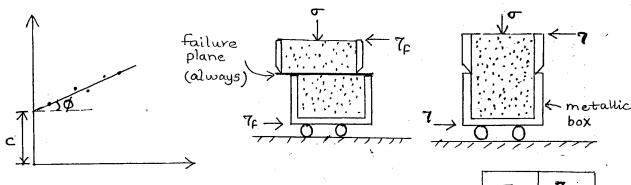


Xx -> failure plane inclination with major principal plane $\propto c = 45 + \phi/2$

$$7_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2}$$
; $7_f \leqslant 7_{\text{max}}$

Cohesionless soil (or) Granular Soil. Eg: - Dry Sand. Cohesive Soil.

Eg: Plastic soit.


 $C-\phi$ soil.

Eg: Clayey sand Clayey gravel Silty clay.

 \rightarrow Tests to find C & ϕ Parameters

- 1. Direct Shear Test.
- 2. Triaxial Theor Test.
- 3. Unconfined Compression Test.
- 4. Vane 8 hear Fest.

* Direct Shear Test (or) Book Shear Test.

, -	· · · · · · · · · · · · · · · · · · ·
Jo	find analytically $c & \phi$:
	7f = c + o tand
	$8 = C + 10 \tanh \rightarrow 0$
	$15 = C + 20 \tanh \rightarrow 2$
<i>~</i> ^	

['#	
8	
15	
22,	
29	_
	8 15 22

Solving we get C & \$ values.

- This test is generally used for cohesionless soils.

- The main disadvantage of the test is that pore pressur cannot be measured directly.

- Depending on the drainage conditions provided, value of cohesion and angle of shearing resistance may be c'or Cu and p'or pu.

* Iniascial Shear Fest.

 \bigcirc

0

0

0

0

O

0

0

 \odot

 \mathbf{O}

0

0

0

()

0

0

0

O

0

0

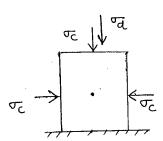
0

О

0

0

 Θ

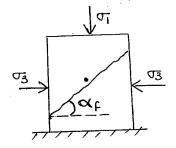

0

O

 \bigcirc

()

 \bigcirc



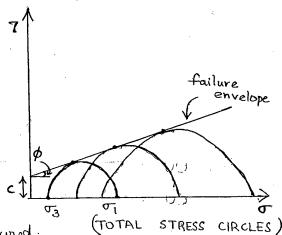
Rubber Membra drain pipe

oc: confining pressure (due to water) od: Deviator stress (externally applied)

Water and wind always exerts normal force.

σε = confining pressure or cell pressure or chamber pressure or consolidation pressure or alround pressure

$$\sigma_1 = \sigma_C + \sigma_d$$


σ <u>3</u>	σ_1	u
10	19	वे
20	36	q
30	54	13
40	70	18

Tkeeping of constant, determine the deviator stress required to cause shoar failure. Using od, determine

Open the value of drain pipe to drain out pore water which gives $c' & \phi'$

- Close the drain pipe valve to obtain Cu & Pu (undrained)

When the test is performed under undrained conditions. prosure can be measured. pore water

$$\sigma_{3}' = \sigma_{3} - u \quad \& \quad \sigma_{1}' = \sigma_{1} - u$$

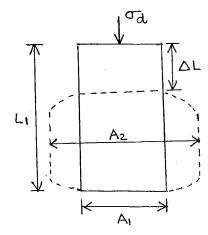
- using σ_3 , $8\sigma_1$, draw the effective stress circles. A failure envelope tangential to the effective stress circles is drawn and c' 8 ϕ' are obtained.
- Pore presure developed in the case of drained test is zer

-> Plastic Equilibrium

A material is said to be in plastic equilibrium it every point of soil is at verge of failure.

**Plastic Equilibrium equations:

$$\sigma_{1} = \sigma_{3} \tan^{2} \left(45 + \frac{\phi_{1}}{2}\right) + 2Cu \tan \left(45 + \frac{\phi}{2}\right)$$


$$\sigma_{1}' = \sigma_{3}' \tan^{2} \left(45 + \frac{\phi'}{2}\right) + 2C' \tan \left(45 + \frac{\phi'}{2}\right)$$

- -> Depending upon drainage condition, types of SHEAR TESTS:
 - (i) Unconsolidated Undrained Test (UU test)
 - (ii) Consolidated Undrained Test (CU test)
 - (iii) Consolidated Drained Fest (CD test)

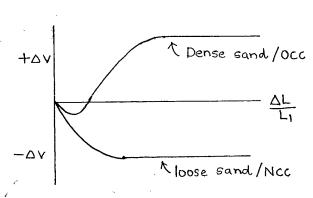
* Stages of Shear test:

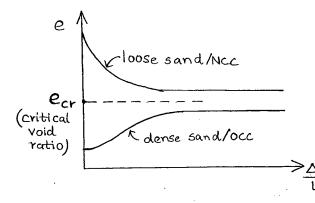
- 1st stage or consolidation stage (application of te)
- 2nd stage on shearing stage (application of Td)
- ⊙ When the value of drain pipe is opened when of is applied (1st stage), pore water escapes and soil gets consolidater Otherwise, it remains unconsolidated.
- When the value is open during application of va, drained condition is obtained.
 - UU test: Drain value is always kept closed (Quick test)
 - © CU test: Valve is open is 1st stage & closed in 2nd stage
 - O CD test: Valve is always kept open (Slow test)

- C & \$ are shear strength parameters and not the 158 property of soil. It varies with drainage conditions and if test performed.

O

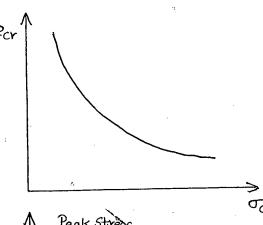
 Θ

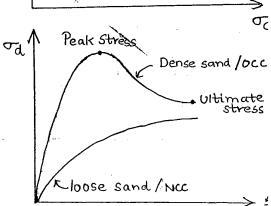

O

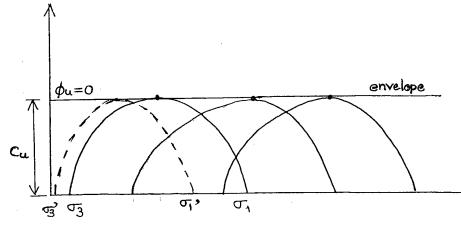

 \mathbf{O}

$$Td = \underline{\text{ascial load}} = \underline{Qa}$$
area at failure $A2$

$$A_2 = \frac{V_1 \pm \Delta V}{L_1 - \Delta L}$$

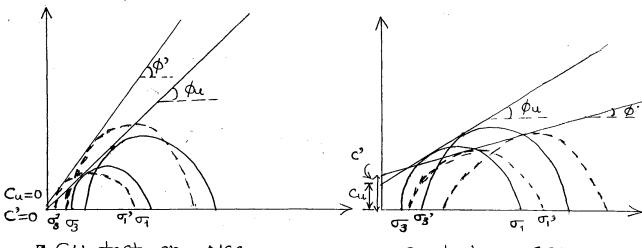

 $\Delta V = 0$) undrained test




- Dilation: - The phenomenon of increase in volume of soil during shearing is called dilation. This is exhibited by dense sand and Occ.

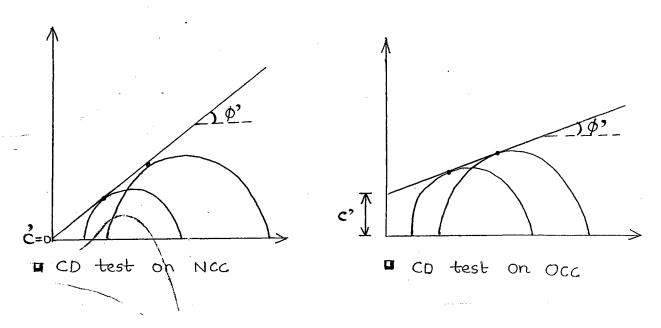
- Critical void natio (ecr) decreases with increase in confining pressure (TC)

- Peak stress and ultimate stress



$$\sigma_1' = \sigma_1 - u$$

$$\sigma_3' = \sigma_3 - u$$


$$\frac{\sigma_3 - \sigma_1}{\sigma_3} = \sigma_{dv}$$
= diametes

■ UU test on NCC & OCC

□ CU test on NCC

· Cu test on occ.

- It is a special type of triancial test with oc = 0
- conducted quickly to have undrained condition,
- suitable for undrained, saturated clays. ($\phi_u=0$)

Qu: unconfined compressive stress.

$$\sigma_{1} = \sigma_{3} \tan^{2}\left(45 + \frac{\phi_{u}}{2}\right) + 2 \operatorname{Cu} \tan\left(45 + \frac{\phi_{u}}{2}\right)$$
In ucc test, $\sigma_{3} = 0$ & $\sigma_{1} = q_{u}$

$$\therefore \left| q_u = 2Cu \tan \left(\frac{45 + \phi_u}{2} \right) \right|$$

If soil is undrained saturated clay, then $\phi_u = 0$

$$\Rightarrow Cu = \frac{9u}{2}$$

$$\mathcal{A} \phi = 0 \Rightarrow \alpha = 45$$

$$7f = 7 \text{max}$$

0

O

 \bigcirc

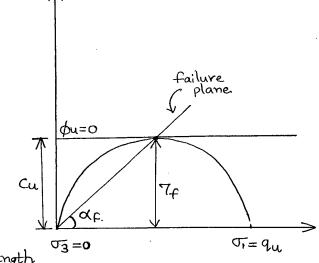
0

 \bigcirc

O

O

O


 \mathbf{O}

0

0

0

- ucc is the only test in which Mohr's Circle passes through the origin.

Hy sensitivity = 1; soil is called "insensitive"

Hy sensitivity > 16; soil is called "quick soil" (Eg:-marine algorithms a type of soil whereas quick sand is a hydraulic condition.

- UCC is not suitable for fiscured clay (cracked)

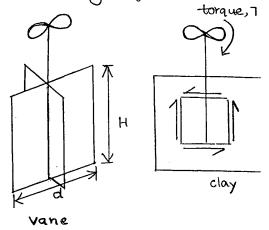
Soil will fail along the existing orack and does not exchibit the real strength.

* Vane Shear Jest:

- can be conducted in lab or field.

- suitable for undrained saturated clays for which

$$\phi_u = 0 \quad (\Rightarrow S = C)$$


$$T = \pi d^2$$
. $Cu\left(\frac{H}{2} + \frac{d}{6}\right)$

when both bottom

8 part take in shear

$$T = Trd^2, Cu\left(\frac{H}{2} + \frac{d}{12}\right)$$

when bottom face takes part in shear

P-73

Ot.

$$Sin \phi = \frac{50}{150} = \frac{1}{3}$$

$$\phi = \sin^{-1}\left(\frac{1}{3}\right)$$

$$\sigma_2, \quad \tau_c = \frac{\sigma_1 - \sigma_3}{2}, \sin 2\alpha.$$

$$0.9 = \frac{5-3.2}{2} \sin 2 \left(45 + \frac{\phi}{2}\right)$$

$$\phi = 0$$

$$7 \text{max} = \frac{\sigma_1 - \sigma_3}{2}$$

Since 7f = 7max, $\phi = 0$

03.
$$\sigma_1 = 200$$
, $\sigma_3 = 60$, $c' = 5 \text{ kN/m}^2$, $\phi' = 25$, $u = 20$

$$\sigma_1' = \sigma_1 - u = 200 - 20 = 180 \text{ kPa}$$

$$\sigma_3' = \sigma_3 - u = 60 - 20 = 40 \text{ kPa}$$

If
$$\sigma_3' = 40'$$
, the required σ_1' to cause failure:
 $\sigma_1' = \sigma_3' \tan^2(45 + \frac{\Phi'}{2}) + 2*c' \tan(45 + \frac{\Phi'}{2})$.

$$= 40 \tan^2\left(45 + \frac{25}{2}\right) + 2 \times 5 \tan\left(45 + \frac{25}{2}\right)$$

() or) = 114 kPa.

0 Since the proposed effective stress (180 KPa) is more than (}

114 KPa, the sample will definitely fail.

Compressive strength = demiator stress = od.

$$c' = 15 \text{ k N/m}^2$$
, $\phi' = 20^\circ$, $\sigma_3' = 60$

$$\sigma_1' = \sigma_3' + \alpha \alpha^2 \left(45 + \frac{\phi}{2} \right) + 2c' + \alpha \alpha \left(45 + \frac{\phi}{2} \right)$$

$$= 60 \tan^2\left(45 + \frac{20}{2}\right) + 2 \times 15 \tan\left(45 + \frac{20}{2}\right)$$

qu = 1.2 kg/cm². ⊕**05**∙

()

0

()

0

0

0

0

 \bigcirc

 \bigcirc

0

 \bigcirc

$$\propto_{\mathcal{E}} = 50^{\circ}$$
.

$$45 + \frac{\phi}{2} = \alpha f$$

$$\phi = (50-45)_2 = 10^{\circ}$$

906.
$$9u = 2atande$$

906.
$$9u = 2c_{1}tand_{c}$$

0 . $c_{1} = 1.2 = 0.503 \text{ kg/cm}$

$$\sigma = 20 \text{ kN/m}^2$$
 ; $7c = 16 \text{ kN/m}^2$

$$C = 8 \, \text{kN/m}^2 \qquad j \quad \phi = 20^\circ$$

$$\sigma = \frac{\sigma_1 + \sigma_3}{2} + \frac{\sigma_1 - \sigma_3}{2} \cos 2 \alpha_{\rm f}$$

$$0 \qquad 20 = \frac{\sigma_1 + \sigma_3}{2} + \frac{\sigma_1 - \sigma_3}{2} \cos 2\left(45 + \frac{20}{2}\right) \rightarrow 0$$

$$\frac{0}{2} + \frac{0}{1} + \frac{0}{3} + \frac{0}{2} \cos 2 \left(45 + \frac{20}{2} \right) \rightarrow 0$$

$$16 = \frac{\sigma_1 - \sigma_3}{2} \sin 2 \left(45 + \frac{20}{2} \right) \qquad \Rightarrow 2$$

$$\sigma_1 = 42.85$$
 kPa & $\sigma_3 = 8.7$ kPa.

07-03 = 34.05

9 103 : 51.65

08. For NCC soil, in cu test,
$$Cu = 0$$
 & $C' = 0$.

Jo find ϕu ,

$$\sigma_{1} = \sigma_{3} \tan^{2} \left(45 + \frac{\phi_{u}}{2}\right) + 2Cu \tan \left(45 + \frac{\phi_{u}}{2}\right)
200 + 150 = 250 \tan^{2} \left(45 + \frac{\phi_{u}}{2}\right) + 0$$

$$\phi_{u} = 15.826^{\circ}$$

To find
$$\phi$$
,

$$\sigma_{1}' = \sigma_{3}' + \alpha_{1}' \left(45 + \frac{\phi'}{2}\right) + 2c' + \alpha_{1}' \left(45 + \frac{\phi'}{2}\right)$$

$$\left(200 + 150 - 75\right) = \left(200 - 75\right) + \alpha_{1}' \left(45 + \frac{\phi'}{2}\right) + 0$$

$$\phi' = 22^{0}$$

10.
$$\sigma_d = 200 \text{ kN/m}^2$$
, $\sigma_3 = 100 \text{ kN/m}^2$

In an undrained test, $\phi_u = 0$.

$$\sigma_{1} = \sigma_{3} \tan^{2}\left(45 + \frac{\phi_{u}}{2}\right) + 2 \operatorname{Cu} \tan\left(45 + \frac{\phi_{u}}{2}\right),$$

$$\sigma_{1} = \sigma_{3} + 2 \operatorname{Cu}.$$

$$Cu = \frac{\sigma_1 - \sigma_3}{2} = \frac{\sigma_d}{2} = \frac{200}{2} = 100 \text{ kPa}$$

H. For dry sand,
$$C=0$$

$$\sigma_1 = \sigma_3 \tan^2(45 + \frac{\phi_u}{2}) + 2 C_u \tan(45 + \frac{\phi_u}{2})$$

$$\sigma_1 = 50 \tan^2(45 + \frac{\phi_u}{2})$$

$$150 = 50 \tan^2(45 + \frac{\phi_u}{2}) \Rightarrow \phi = 38$$

$$\phi = 37^{\circ}$$
, $\sigma_3 = 200 \, \text{kN/m}^2$, $C = 0$.

$$\bigcirc$$

$$\bigcirc$$

14

$$\odot$$

$$\bigcirc$$

$$\sigma_1 = \sigma_3 \tan^2(45 + \frac{\phi}{2}) + 2c \tan(45 + \frac{\phi}{2})$$

$$200 + \sigma_d = 200 + \sigma_0^2 \left(45 + \frac{37}{2}\right) + 0$$

$$\sigma_3' = 150 \text{ kN/m}^2$$

Principle effective sines ratio,
$$\frac{\sigma_1}{\sigma_3}$$
 = 4.2.

$$\sigma_1' = \sigma_3' \tan^2 \left(45 + \frac{\phi'}{2}\right) + 2c \tan \left(45 + \frac{\phi'}{2}\right).$$

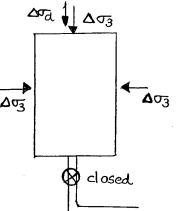
$$4.2 = \tan^2\left(45 + \frac{\phi'}{2}\right)$$
.

$$\Rightarrow \phi' = 37.97^{\circ}$$

$$\sigma_{\alpha} = \sigma_{1}' - \sigma_{3}' = \sigma_{3}' \left(\frac{\nabla_{1}'}{\sigma_{3}'} - 1 \right)$$

$$= 150 \left(4.2 - 1 \right) = \frac{480 \text{ k}}{2} \text{ Pa}$$

-> Skempton's Pore Pressure Parameters (A & B) $\Delta u_3 = B \Delta \sigma_{\overline{3}}$


$$B = 0$$
; for dry soil.

$$B = 1$$
; for saturated soil.

$$\Delta u_d = AB \Delta \sigma_d$$

At failure, A -> Ar.

Jotal,
$$\Delta u = \Delta u_3 + \Delta u_4$$

= $B\Delta \sigma_3 + AB\Delta \sigma_4$.

$$\therefore \quad \nabla \alpha = B \left(\nabla \alpha^3 + A \nabla \alpha^3 \right)$$

→ Shear Failures:

- (i) Brittle Failure.
- ii) Plastic Failure

Plastic Failure.

Brittle Failure

- Quick sand is due to upward seepage; liquefaction in due to compaction caused by urbrations $\Delta \sigma_3 = 100 - 0 = 100 \text{ kN/m}^2$ 09.
 - $\Delta u_3 = 10 (-60) = 70 \text{ kN/m}^2$

$$\Delta u_3 = B \Delta \sigma_3$$
.

$$\beta = \frac{70}{100} = \frac{0.7}{100}$$

$$-60$$
 1st stage 2nd $\begin{cases} 10 \end{cases}$ (consolidation stage $\begin{cases} -70 \end{cases}$

$$-80 = A \times 0.7 \times 500$$

$$A = -0.23$$

- $B \rightarrow$ depends on degree of saturation, Sr
- A -> depends on over consolidation ratio, OCR
- -> Liquefaction:

$$S = \sigma' \tan \phi' = (\sigma - u) \tan \phi'$$

Due to vibrations caused by earthquakes or pile drivings, soil gots compacted and ut.

 $\sqrt{\chi}$ (fine sand silt) cohesionless $u = \sigma$, S = 0 (80il behaves as a liquid)

 \bigcirc

0

0

0

0

0

0

0

0

()

0

0

0

0

0

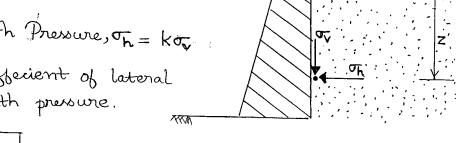
O

0

O

0

O


O

EARTH PRESSURE

 $\sigma_{V} = \delta z$

Lateral Earth Pressure, on = ko

where K > coefficient of lateral earth pressure.

$$k = \frac{\sigma_h}{\sigma_v}$$

-> Types of Lateral Earth Pressures.

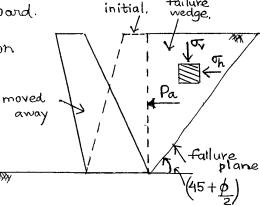
- 1. At rest Earth pressure (Po)
- 2. Active Earth pressure (Pa)
- 3. Passive Earth pressure (Pp)

* At-rest Earth Pressure:

- _ It arises when there is no movement of wall.
- No yielding of soil.
- elastic equilibrium. I theory of elasticity is used to find

At rest earth pressure, Po = ko.or

Ko -> coefficient of at-rest earth pressure


$$K_0 = \frac{u}{1-u}$$
, $u \rightarrow poissons nation of soil.$

 $K_0 = 1 - \sin \phi$; for cohesionless soils.

* Active Earth Pressure.

- It arisas when the wall moves away, from backfill.
- Failure wedge moves downward.
- It is a plastic egbm condition

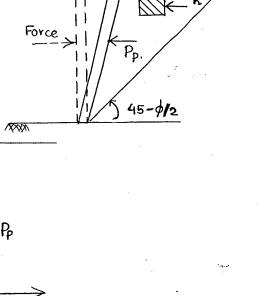
Here $\sigma_v = \sigma_1 & \sigma_h = \sigma_3$ Failure plane makes an angle of $(45 + \phi/2)$ with Major principal plane.

towards

* Passive Earth Pressure

- _ It arises when the wall moves towards the backfill.
- Failure wedge moves upwards.
- It is a plastic egbm condition.

*3*c2


tuall movement

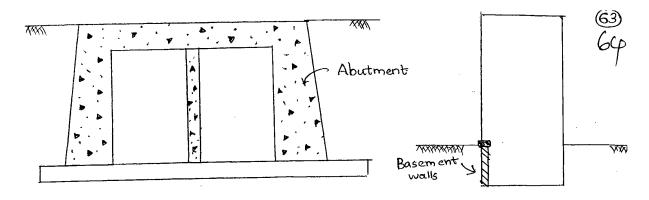
towards backfill.

Here $\sigma_v = \sigma_3$ $\sigma_h = \sigma_1$

oh.

 K_{∞}

Pa


MONDAY

wall movement away from backfill

- 0 Pp > Po > Pa
- $0 x_1 < x_2$

-> Practical Applications:

(i) For design of ordinary retaining wall, - active pressure is used (ii) For design of bridge abutments and base ment walls - at rest earth pressure is used

(iii) For design of sheet piles - both active 8 passive pre. used.

-> Rankine's Theory:

O

9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 \bigcirc ,

 \mathbf{O}

 \mathbf{O}

0

0

0

O

0

0

0

O

0

О

O

O

 \bigcirc

 \bigcirc

- to find Pa & Pp.
- * Assumptions:-
 - (i) Soil is dry and cohesionless.
 - (ii) The back of the wall is vertical and smooth.
- (iii)Plastic equilibrium.

Plastic equilibrium equation :-

$$\sigma_1 = \sigma_3 \tan^2 \alpha_f + 2c \tan \alpha_f$$

for cohesianters soil,

$$\sigma_1 = \sigma_3 \tan^2 \alpha f$$

In active case, $\sigma_1 = \sigma_V & \sigma_3 = \sigma_h$.

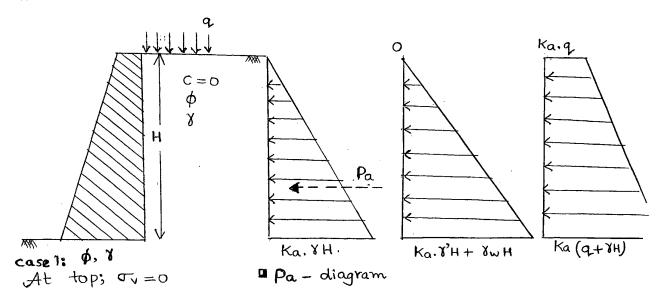
$$\sigma_h = \frac{\sigma_v}{\tan^2 \alpha_F}$$

or
$$Pa = ka \sigma_{\overline{V}}$$

where $Ka \rightarrow coeffecient of active earth pressure. <math>\left(= \frac{1}{\tan^2 \alpha_f} \right)$ $Ka = \frac{1}{\tan^2 \alpha_f} = \frac{1}{\tan^2 \left(45 + \frac{\phi}{2} \right)} = \tan^2 \left(45 - \frac{\phi}{2} \right)$

or
$$Ka = \frac{1 - \sin \phi}{1 + \sin \phi}$$

Similarly,


$$P_{p} = k_{p} \cdot \sigma_{v}$$

Kp -> coeffecient of passive earth pressure.

$$K_p = \frac{1 + \sin \phi}{1 - \sin \phi} = \frac{1}{K_a}$$

Po = ko or -> for both cohesive & cohesionless soils

$$P_a = k_a \sigma_v$$
 \Rightarrow cohesionless soils $P_p = k_p \sigma_v$

 $P_{\alpha} = K_{\alpha}\sigma_{\overline{y}} = 0.$

At bottom, Ty = 8H.

Let $P_a = \text{total}$ active force. = area of pressure diagram. $P_a = \frac{\text{ka. } 8 \, \text{H}^2}{3}$; at $\frac{\text{H}}{3}$ from base

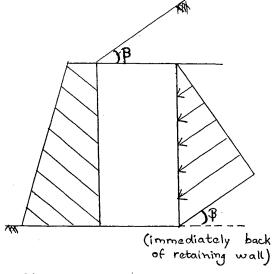
case 2: \$, sat, wt on ground.

At top; Pa = 0

At bottom; ov' = V'H

case 3: surcharge loading, q

At top;
$$\sigma_{\bar{v}} = q$$
.


 Θ

O

 Θ

O

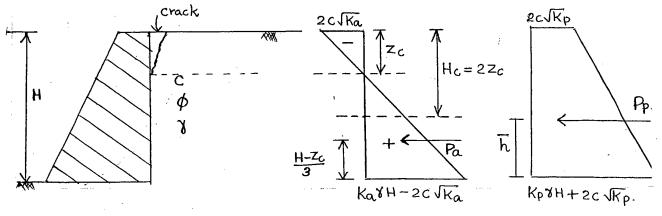
$$Pa = Ka\sigma v = Ka(q+vH)$$

Here
$$Kp \neq \frac{1}{Ka}$$

$$P_a = k_a \cdot \sigma_v$$

$$P_P = k_P \cdot \sigma_{\overline{V}}$$

$$ka = \cos \beta \left(\frac{\cos \beta - \sqrt{\cos^2 \beta - \cos^2 \phi}}{\cos \beta + \sqrt{\cos^2 \beta - \cos^2 \phi}} \right)$$


$$K_{p} = \cos \beta \cdot \left(\frac{\cos \beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi}}{\cos \beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi}} \right)$$

$$\rightarrow$$
 C- ϕ Soils

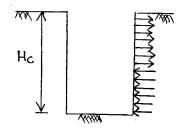
$$P_{a} = K_{a} \cdot \nabla_{v} - 2c \sqrt{K_{a}}$$

$$P_{p} = K_{p} \cdot \nabla_{v} + 2c \sqrt{K_{p}}$$

· Cohasion decreases active pressure but increases passive pressure

At bottom; ov = 8H.

Pa= Ka 8H-2C√Ka.


Zc: depth of tension zone (or) depth of tension crack

At a depth of Zc,

$$0 = K_a, \% Z_c - 2c \sqrt{K_a}$$

$$Z_{c} = \frac{2c}{y \int k_{a}}$$

$$= \frac{2c}{y} \tan(45 + \phi/2).$$

$$=\frac{2c}{8}$$
; for pure clay $(\phi=0)$

Hc: critical height or depth of unsupported vertical trench.

$$+ H_{c} = 2 Z_{c} = \frac{4c}{y \sqrt{k_{a}}} = \frac{4c}{y} \tan \left(45 + \frac{\phi}{2}\right)$$

$$= \frac{4c}{y}; \text{ for pure clay.}$$

* To find total active force, Pa

a. Before formation of crack.

$$Pa = \int_{0}^{H} Pa \cdot dz = total$$
 algebraic sum of area of pressure diagnam.

$$Pa = ka \cdot \frac{8H^2}{2} - 2c \sqrt{ka} \cdot H$$

(b) After formation of crack

$$P_a = \int_{Z_c} P_{a,dZ} = area of +ve portion only.$$

$$\Theta$$

U

 \bigcirc

$$\bigcirc$$

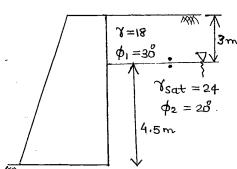
$$\bigcirc$$

$$\Theta$$

$$\bigcirc$$

$$Pa = Ka. \frac{YH^2}{2} - 2C\sqrt{KaH} + \frac{2C^2}{Y}$$

$$Pa = Ka \cdot \frac{\chi H^2}{2} - 2c\sqrt{Ka}H + \frac{2c^2}{\chi}$$


$$P_p = K_p \sigma_v + 2c \sqrt{K_p}$$
.

At top,
$$\sigma_{V} = 0$$
. $\therefore P_{P} = 2c\sqrt{k_{P}}$

passive

$$P_{p} = k_{p} \sqrt[3]{\frac{H^{2}}{2}} + 2c\sqrt{k_{p}} H$$

$$H = 7.5 m;$$

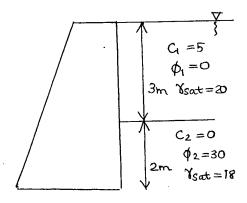
$$Ka_{1} = \frac{1 - \sin \phi_{1}}{1 + \sin \phi_{1}} = \frac{0.33}{1 + \sin \phi_{1}}$$

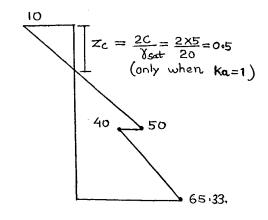
$$K_{a2} = \frac{1 - \sin 20}{1 + \sin 20} = \frac{0.49}{1 + \sin 20}$$

$$Pa = Ka_1 \cdot \sigma_V = 0$$

$$Pa = a$$
) Just above 3m depth
 $Pa = Ka_1 \sigma_V = 18 \text{ KPa}$

b) Gust below 3m depth,
$$P_a = K_{a2} \sigma_v = 0.49 \times 54$$


$$= 26.48 \text{ kPa}$$


At bottom;
$$\sigma_{V} = 18 \times 3 + (24-9.81)$$

= 117.855 kPa

Jotal force,
$$Pa = \frac{1}{2} \times 18 \times 3 + \frac{26.46 + 101.89}{2} \times 4.5$$

= $\frac{315.832}{2}$ kN/m.

• Area of Pressure force diagram = Force per unit length,

02.

$$Ka = \frac{1-\sin\phi}{1+\sin\phi} = \frac{1}{1+\cos\phi}$$

$$Ka2 = \frac{1 - \sin 30}{1 + \sin 30} = \frac{1}{3}$$

$$\sigma_{\mathbf{v}} = 0$$

Pa =
$$Ka_1 \sigma_V = -2c_1 \sqrt{Ka_1}$$

= $0 - 2 \times 5 \times 1 = -10 \text{ kPa}$. (tension).

At bottom; OV = 10x3+ 8x2=46 $Pa = 46 \times \frac{1}{3} + 10 \times 5$ = 65.33 kPa

At 3m depth;

$$\sigma_{\nu}' = (20 - 10) 3 = 30 \text{ kPa.}$$

a) Just above 3m depth,

$$Pa = \sigma v' Ka_1 + -2C_1 \sqrt{Ka_1} + \delta wh,$$

= 30 x1 - 2x5 + 10x3 = 50 kPa.

b) Gust below 3m depth,

$$Pa = \sigma_{V}' Ka_{2} - 2C_{2} \sqrt{Ka_{2}} + \lambda_{Wh},$$

= $30 \times \frac{1}{3} - 0 + 30 = 40 \text{ kPa}.$

()

0

0

0

0

0

0

0

0

0 0

() ()

0

0

0

O

O

0

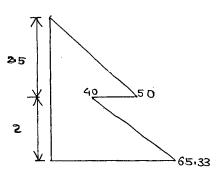
O O

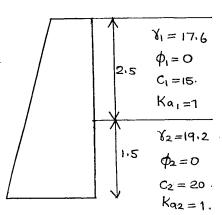
 \bigcirc

 \bigcirc

To find Zc:

$$0 = 1 \times 10 Z_c - 2 \times 5 \times \sqrt{1 + 10} Z_c$$


$$Z_{c} = \frac{10}{20} = \frac{0.5}{5} \text{ m}$$


From similar triangles,

$$\frac{10}{Z_{c}} = \frac{50}{3-Z_{c}} \Rightarrow Z_{c} = 0.5 \text{ m}$$

Neglecting tension zone:

$$P_{\alpha} = \frac{1}{2} \times 50 \times 2.5 + 2 \left(\frac{40 + 65.33}{2} \right) = \frac{167.8 \text{ kN/m}}{2}$$

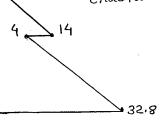
At top: $\sigma_{V} = -2C\sqrt{Ka_{1}} = -30$

$$P_a = Ka_1 \sigma_V = -30 \text{ kPa.}$$

At 2,5 m depth;

$$\sigma_{V}^{*} = \sqrt{\frac{9}{2}} \times 2.5$$

= 17.6×2.5 = 44 kPa.


a) Gust. above,

$$P_a = K_{a_1} \nabla_{v}^{*} - 2C_1 \sqrt{K_{a_1}}$$

= 49- 2 x 15 = 14 k Pa.

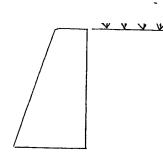
b) Just below,

$$P_a = 1 \times 44 - 2 \times 20 = 4 \text{ kPa}.$$

1.7 Neglect tension. Zone, as tension. Cracks develop.

At bottom:

$$\sigma_{V} = 17.6 \times 2.5 + 19.2 \times 1.5$$
= 72.8.


$$Pa = 72.8 - 2 \times 20$$

= 32.8 kPa

Fotal active force, P_a = $(2.5-1.7)\times14\times0.5+$ $0.5(4+32.8)\times1.5$

$$= 33.168 \text{ kPa}$$

Pa =
$$Ka \sigma v - 2c \sqrt{Ka}$$
.
 $0 = Ka \cdot q - 2c \sqrt{Ka}$.

$$q = \frac{2C}{\sqrt{Ka}} = 2c tand c$$

05,

When there is no surcharge, at bottom, Pa = Ka & H.

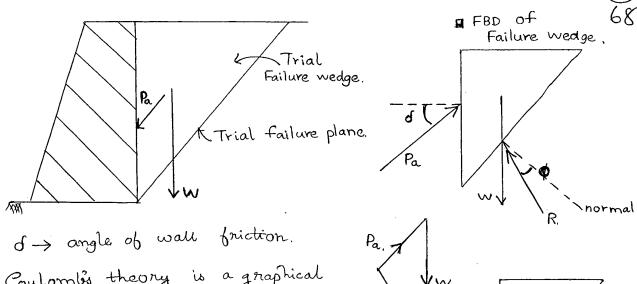
$$5000 = Ka.1700 \times 10.$$

If there is surcharge,

$$= k_a, q = 0.294 \times 2000$$

$$= 588 \text{ kg/m}^2.$$

=
$$Ka(q + vH) = 5588 \text{ kg/m}^2$$
.


Mascimum earth pressure = 5588 kg/m²

Resultant force on the wall =
$$\frac{1}{2}$$
 (5588+588) x 10

-> Coulomb's Theory

* Assumptions:

- (i) Soil is dry and cohesionless.
- in Back of the wall is nough

Coulombis theory is a graphical trial 8 error method of computing lateral earth pressures (Pa & Pp).

 \bigcirc

 \bigcirc

 \bigcirc

()

0

0

 \bigcirc

()

0

O

()

0

0

 C_j

 \bigcirc

)

)

Э

) 16.

NOTE: Effect of Wall friction:
The wall friction reduces active pressure but increases

passive pressure; both are advantageous.

■ force

triangle

Tor stone masonry retaining walls, Coulomb's Theory is used.

**Rebhan's Dethod & Culman's Method - graphical method of computing Pa & Pp using Coulomb's theory.

When soil is compacted, $\phi \uparrow \Rightarrow ka \lor$ $Pa = ka \lor H (\lor).$

Ka↓ > ¥↑

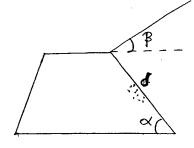
26. Cohesive soils are poor for backfilling as they cause more lateral pressure. due to following reasons:

(i) for clays of is loss, Hence Ka is more.

(1) Swelling of clays.

(iii) Clays have poor drainage proporties.

(iv) Compaction of claye behind the wall is difficult.


For backfilling behind the walls, cohesionless soils like gravel and sand are best.

1 Ka due to above factors is more than the $\sqrt{\frac{1}{1}}$ Ka due to cohesion. (Pa = $\frac{1}{1}$ Ka $\frac{1}{1}$ Cohesion.

-> Solution for Coulomb's Theory.

Force,
$$Pa = \frac{\chi H^2}{2}$$

where Ka depends on α , β , δ ,

Then,
$$K_a = \frac{\cos \phi}{(1+\sqrt{2}\sin \phi)^2}$$
, $K_p = \frac{\cos \phi}{(1-\sqrt{2}\sin \phi)^2}$

0

0

0

0

0

0

0

()

0

0

 \bigcirc

 \mathbf{O}

0

0

0

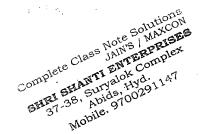
O

0

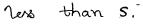
O

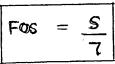
0

 Θ


0

 \bigcirc


 \bigcirc


15. STABILITY OF SLOPES

- -> Forces which cause failure of Slopes:
 - (i) Gravitational Force.
 - (ii) Seepage force
 - (iii) Earthquake Force.
 - (iv) Construction equipment loads.

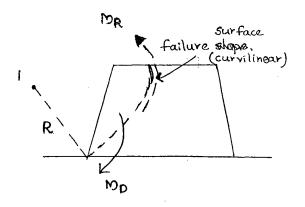
- -> Types of Slopes:
 - (i) Infinite slope. Eg: mountain slope.
 - (ii) Finite slope Eg: embankment of roads, earther dams,
- \rightarrow Types of Slope Failures:
 - (i) Translattornal failure.
 - (i) Rotational Failure.
 - (ii) Wedge Failure.
 - (iv) Compound Failure.
 - * Translational Failure.
- If 7>5; translational failure occurs
- : to avoid failure, 7 must be kept

if

FOS >1; it is safe.

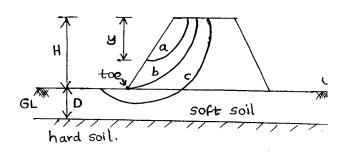
FOS < 1; unsafe.

FOS = 1; cnitical


* Rotational Failure

MD = driving moment.

MR = resisting moment.


If Mo>MR, failure occurs

$$\therefore \boxed{\text{Fos} = \underbrace{M_R}_{M_D}}$$

- types of rotational failures:
 - a) Face failure
 - b) Toe failure.
 - c) Base failure.

Depth factor, $D_F = \frac{H+D}{H}$

For base failure, Dr >1 (when there is soft soil)

For toe failure, DF = 1 (when there is no soft soil).

For face failure, DF < 1

Depth factor, $D_F = \frac{y}{H}$

where $y \rightarrow$ vertical depth of point where failure surface passes as shown.

* Wedge Failure

The soft soil above the interface blu soft soil and hand soil will fail as a wedge.

* Compound Failure,

 \mathbf{O}

 \bigcirc

0

()

0

0

0

O

O

0

0

O

0

0

0

O

O

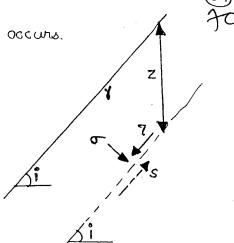
0

0

O

O

0


Θ

O

$$Fos = \frac{S}{7}$$

$$S = C + \sigma tan \phi$$

$$\sigma = \%z \cos^2 i$$

a) Dry or Partially Saturated Soil.

Fos =
$$\frac{C + \sigma + \tan \phi}{7} = \frac{C + 8z \cos i + \tan \phi}{8z \cos i \sin i}$$
, (at a depth

b) Fully submerged soil. (mountain in ocean).

$$FOS = \frac{c' + \delta' z \cos^2 i \cdot \tan \beta'}{\sqrt{z \cos i \cdot \sin i}}$$

c) It there is seepage parallel to slope. (rainwater seeping).

$$FOS = \frac{c' + \sqrt[3]{z \cos^2 i \cdot \tan \phi'}}{\sqrt[3]{sat} \cdot z \cdot \cos i \cdot \sin i}$$

* Infinite Slope in Cohesionless soils (c=0)

FOS =
$$\frac{\tan \phi}{\tan i}$$
 (if $i > \phi$; it fails)

b) For fully submerged slope.

FOS =
$$\frac{\tan \phi'}{\tan i}$$

c) Seepage parallel to slope,

Fos =
$$\left(\frac{\gamma'}{\gamma_{\text{sat}}}\right) \frac{\tan \phi'}{\tan i}$$

0

-> Finite Slope

- generally, notational, failure occurs.
- methods of analysis:
 - 1. $\phi_u = 0$ Analysis.
 - 2. Method of slices.
 - 3. Bishop's method.
 - 4. Friction circle method.
 - 5. Stability number method.

* $\phi_u = 0$ Analysis:

- suitable only for undrained saturated clays.
- graphical method based on trial & error.

$$M_{D} = W.x$$

$$M_R = C_u \cdot \hat{L} \times 1 \times R$$

$$FOS = \frac{M_R}{M_D} = \frac{CuLR}{W.x}$$

$$\Gamma \rightarrow \text{arc length.}$$

$$\hat{L} = R0 \frac{\pi}{80}$$

W -> weight of trial failure wedge.

$$W = a \times 1 \times 7$$
; $a \rightarrow area$ of trial failure wedge.

Submorged slope.

(canal running full)

use Vsat for sudden drawdown conditi

$$\Rightarrow$$
 For $\propto \frac{1}{\gamma}$

- for a canal slope, the critical condition is sudden drawdown condition.

During sudden drawdown, & increases to sat and :.

- o Among the various trials, the trial slip surface which gives min. factor of safety is called "Critical Slip Surface" and that min. FOS is taken as the FOS of the slope.
 - * Method of Slices:

 \bigcirc

 \ominus

()

0

0

0

O

0

O

O

0

0

O

0

0

()

0

0

 \mathbf{O}

 \mathbf{O}

0

0

0

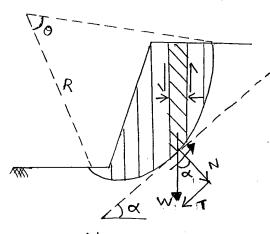
Ò

О

0

0

 Θ


О

 \mathbf{O}

 \bigcirc

- used for all soils.
- trial and orror.
- forces acting on the gides of slices are neglected.

$$F = \frac{\widehat{CL} + \sum N \tan \phi}{\sum T}$$

 $N = W \cos \alpha$ $T = W \sin \alpha$

· When there is seepage,

$$F = \frac{c'\hat{L} + \Sigma(N-u)\tan\phi'}{\Sigma T}$$

 $\Sigma U \rightarrow sum$ of neutral forces.

· Fellenius method to identify Critical Slip Circle:-

(depend on i) Fellenius

(depend on i) Fellenius

Point 'p' represents Centre of

Critical Slip ande for pure clays.

For c & soils, the centre of critical H

slip ande lies on the Fellenius line, 4.5 H.

- * Bishop's Method.
 - forces acting on the sides of slices are also considered
 - trial and error
- * Friction Circle Method.
 - trial and error

C = cohesion

Cm = mobilised cohesion.

 ϕ = angle of internal friction.

 $\phi_m = mobilised$ angle of internal friction.

S = shear strength.

5m = mobilised shear strongth.

o'Mobilised' means actually developed to keep system in equm.

FOS writ cohesion, $F_c = \frac{C}{C_m}$

FOS writ friction, $F\phi = \frac{\tan \phi}{\tan \phi_m}$

FOS wit shear strength, $F = \frac{S}{Sm} = \frac{C + \sigma \tan \phi}{Cm + \sigma \tan \phi_m}$

or remains the same as its related to weight, whereas C& p. are intornal proporties which develops as required.

 $r = R \sin \phi$

Eslip circle.

Resultant Cohesive force.

- ⊙ For pure clay, $(\phi=0)$ ⇒ r=0
- resultant of frictional force & normal reaction,
- Resultant of frictional force and
 - normal reaction will be tangential to the friction circle

* Taylor's Stability Number Method.

- developed based on Friction Circle method.

- Stability number,
$$S_n = C$$
 $F_c. 8H$

where $F_c = \frac{C}{G_m} = \frac{H_c}{H}$; $H_c \rightarrow critical height.$

He -> mase, permitted height which can provided for given soil against failure.

H -> sabe or actual height.

 \bigcirc

 Θ

()

()

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

O

0

 \mathbf{O}

O

O

O

 \mathbf{O}

Э

$$\Rightarrow S_{n} = \frac{C_{m}}{\gamma_{H}} = \frac{C}{\gamma_{Hc}}$$

$$\vdots F_{c} = \frac{C}{S_{n} \gamma_{H}}$$

• Sn depends on i & ϕ m (or) i & depth factor

Knowing F ϕ & ϕ value, ϕ m can be calculated by:- $F\phi = \frac{\tan \phi}{\tan \phi}$

Masc. value of Sn = 0.261 (for $i = 90^{\circ} \& \phi m = 0$)

- Except for cohesionless soil, this method is outtable for all soils. (for cohesionless, $c=0 \Rightarrow Fc=0$; meaningless)
- In submerged slope, use V'For sudden draw down condition, use V_{sat} & $\phi_m = \phi_w$ $\phi_w = \text{weighted}$ friction angle $= \frac{V'}{V_{sat}}$. ϕ

O

 Θ

O

O₀₂.

a)

OI.
$$F = \frac{c + \sqrt{2} \cos i \tan \phi}{\sqrt{2} \cos i \cdot \sin i} \rightarrow \text{fon } c - \phi \text{ soil.}$$

$$0$$
 i can be greater than ϕ .

0 03.
$$S_n = \frac{C}{F_c \ YH} \Rightarrow F_c \ \propto \frac{1}{Y}$$

04.
$$F = \frac{\gamma^2}{\gamma_{\text{sat}}} \frac{\tan \phi^2}{\tan \phi}$$

$$1.5 = \frac{19-9.81}{9.81} \quad \frac{\tan 36}{\tan i}$$

$$i = 13.18^{\circ}$$

$$F = \frac{\tan \phi}{\tan i} \implies F = 3.10$$

$$\theta = 109 + 12 = 121^{\circ}$$

$$\widehat{L} = R\theta \frac{\pi}{180} = 14.5 \times 121 \times \frac{\pi}{180} = 30.62$$

$$w = \alpha x 1 x x$$

$$= 110 \times 1 \times 18 = 1980$$

$$\overline{\infty} = 3.75 \text{ m}$$

$$FOS = \frac{CLR}{wx} = \frac{27 \times 30.62 \times 14.5}{1980 \times 3.75} = \frac{1.61}{}$$

$$FOS = \frac{CLR}{wx} = \frac{27 \times 30.62 \times 14.5}{1980 \times 3.75} = \frac{1.61}{}$$

b)
$$\Theta = 109^{\circ}$$
, $\Theta = 109^{\circ}$

$$\Theta = 109^{\circ}$$
, $F = \frac{Cu LR}{w\bar{x}}$

$$L = R\theta \times \frac{TT}{180} = 27.585$$

$$W = ax1xY$$
 $\overline{x} = 3.75 \text{ m}.$
= $(110-1.5)x18$

= 1953

$$= 27 \times 27.585 \times 14.5 = 1.47$$
1 953 × 3.75

6.
$$H = 25m$$
, $C = 35$, $\phi = 15^{\circ}$

a)
$$\gamma = 20$$
.

$$F_0 = \frac{\tan \phi}{\tan \phi_m}$$

$$1.5 = \frac{\tan 15}{\tan \phi_m} \Rightarrow \phi_m \approx 10^\circ$$

For
$$\phi_m = 10^\circ$$
, $S_n = 0.06$.

$$S_n = \frac{C}{F_c \Upsilon H}$$

$$0.06 = 35$$

$$F_{c} \times 20 \times 25$$

$$\Rightarrow F_{c} = 1.167$$

$$S_{n} = \frac{C}{E_{n} \chi_{H}} = 0.05.$$

$$\dot{\phi}_{\rm m} = 12.5^{\circ}$$
 (From table given).

$$F\phi = \frac{\tan \phi}{\tan \phi_m} = \frac{\tan 15^\circ}{\tan 12.5^\circ} = \frac{1.208}{}$$

a)
$$S_n = \frac{C}{F_c \ Y'H}.$$

Since
$$F\phi$$
 is not given, taken $\phi m = \phi$.

$$\therefore \phi_m = 15^{\circ} \rightarrow S_n = 0.083.$$

$$S_n = \frac{C}{F_c \gamma^2 H}$$

$$0.083 = 1.4$$

For suddenly draw down,

() b)

0

0

()

()

0

0

0

0

()

0

0

()

 \bigcirc

9

0

O

(\)

O

 \ominus

O

$$S_n = C$$

Fc Ysot, H **(**}

() $\phi_m = \phi_w$

$$\phi w = \frac{\gamma^2}{\gamma_{cn+}} \phi \approx 7.5^{\circ} \Rightarrow S_n = 0.122$$

 $\Rightarrow 0.122 = 1.4$ Fc x1,945X5

Fc = 1.18

 $F_{C} = \frac{C}{C_{m}} = \frac{30}{22} = \frac{1.36}{1.36}$

 $F\phi = \frac{\tan \phi}{\tan \phi_m} = \frac{\tan 15}{\tan 12} = \frac{1.26}{}$

$$F = \frac{g}{Sm} = \frac{c' + (r) tan \phi'}{C_m + (r) tan \phi_m} = \frac{62.17}{47.5} = \frac{1.308}{47.5}$$

*To find Fp when Fo=1:

Sm = Cm + o tampm *

 $47.5 = \frac{C}{Fc} + \frac{120 \tan \phi'}{F\phi}$

 $= \frac{30}{1} + \frac{120 \tan 15}{F \phi}$

$$\Rightarrow F\phi = 1.829$$

Similarly, to find Fc when Fp = 1.

$$47.5 = \frac{C}{F_c} + \frac{120 \tan \phi'}{1}$$

 \bigcirc Fc = 1.95

A granular soil possesses Vsat = 20 kN/m3. If \$\psi' = 35, and φ the designed FOS is 1.5, what is safe angle of slope for soil when seapage occurs parallel to slope surface this

$$F = \frac{\chi'}{\chi_{sat}} \frac{\tan \phi'}{\tan i}$$

$$1.5 = 10 \tan 35$$
 $20 \tan i$

$$\Rightarrow i = 13.14^{\circ}$$

$$Q \qquad C = 15 \text{ kN/m}^2$$

$$Q \qquad V = 18 \text{ kN/m}^3$$

A slope is shown in the fig.

If the properties of soil

are as above, find the

FOS against possible wedge failure at the interface.

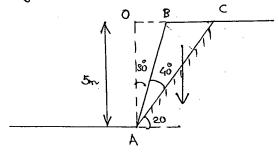
$$F = \frac{CL + N \tan \phi}{T}$$

L = length of Ac

N = normal component of weight, w; N = Wcos20 W > weight of wedge, ABC. T= Wsin 20

T = Tangential component of weight, w.

$$\tan 70^{\circ} = \frac{00}{5}$$


Oc = 13.73 m.

tan
$$30^\circ = \frac{OB}{5}$$

$$OB = 2.88 \text{ m}.$$

tan
$$30 = \frac{OB}{5}$$

$$OB = 2.88 m$$

$$BC = OC - OB = 13.73 - 2.88 = 10.85 m.$$

$$Ac = \sqrt{5^2 + 13.73^2} = 14.61 \text{ m}$$

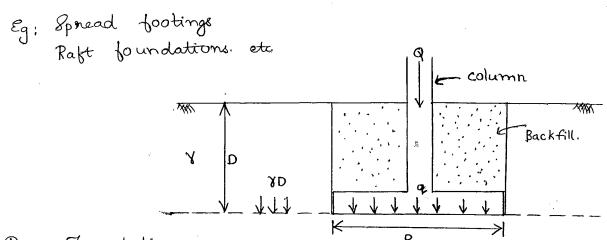
$$W = \left(\frac{1}{2} \times 10.85 \times 5\right) \chi = 488.25 \text{ kN}$$
area of wedge

$$N = 488.25 \cos 20 = 458.805$$

$$T = 488.25 \sin 20 = 166.99$$

 \bigcirc

()


 \odot

$$F = \frac{CL + N \tan \phi}{T} = \frac{15 \times 14.61 + 458.805 \tan 20}{167}$$

95th sept, HURSDAY

16 BEARING CAPACITY

* Shallow Foundation: D&B

* Deep Foundation: D>B &: Pile foundation Well foundation.

* Original overburden pressure due to self weight of soil = YD

Gross Pressure = qNet Pressure, qn = q - YD

* Gross Ultimate BC of soil }, que

Min. gross pressure required to cause shear failure Ob soils

* Net Ultimate BC of soil, Inu = qu- VD.

Min. net pressure required to cause shear failureof soils.

0 0 0 ()

 \bigcirc

0

O

0

0

0

O

0

O

O

0

()

* Net safe BC of soil, $q_{ns} = \frac{q_{nu}}{F}$ (F=3) \times Grow sole BC of soil $\left.\right\}$ 9s = 9ms + 8D

* Wet safe settlement pressure, 9np.

It is the not pressure which the the soil can carry without exceeding allowable settlement.

* Net Allowable BC of soil, qua = Smaller of que or que ans -> based on shear failure criteria anp -> based on settlement criteria.

It is the not pressure at which soil neither fails in shear nor undergoes excessive settlement.

-> Condition to be satisfied for Design of Foundation The exchannal pressure on soil < net allowable BC of so 9n < 9na

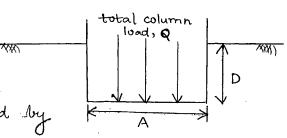
* It footing is backfilled.,

 $q_n \approx \frac{Q}{\Lambda}$

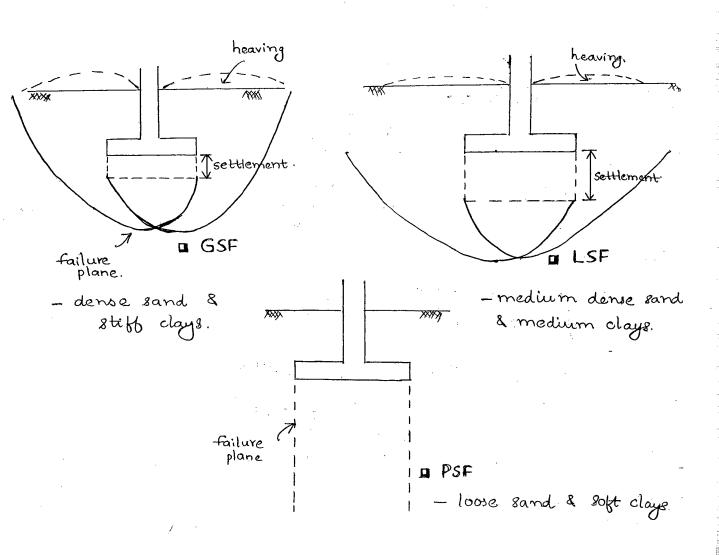
Q = column load.

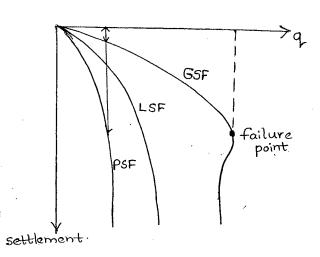
A = area of footing

* If footing is not backfilled, (raft) 9n = Q - 8D

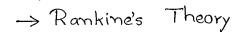

It is based on the assumption that self weight of concrete is equal to unit weight of soil (&c = 25; \$ = 20)

-> Compensated Raft Foundation (Floating Raft)


$$q_n = \frac{Q}{A} - \delta D.$$


$$f_{\delta} = \frac{Q}{\Delta}$$
; $q_{n} = 0$

Pressure applied is just balanced by pressure released.


- → Types of Shear Failure:
 - 1. General Shear Failure (GSF)
 - 2. Local Shear Failure (LSF).
 - 3. Punching Shear Failure (PSF).

- For GSF, there will be a definite bailure point.
- failure For the same load intensity,

 (Settlement) psr > (settlement) GSF

0

 Θ

0

0

0

0

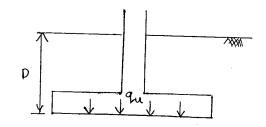
0

O

O

0

0


0

O

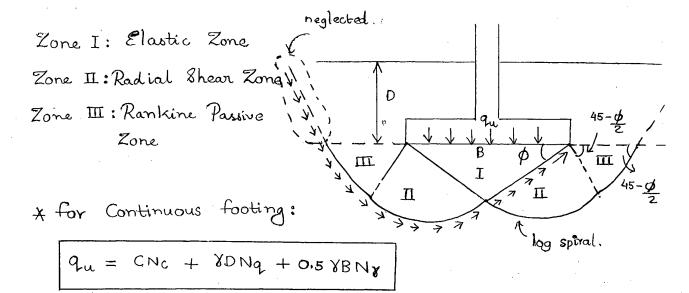
0

 \bigcirc

- Soil is cohesionless.
- Footing base is smooth.
- Plastic equilibrium.

$$q_{u} = \sqrt[8D]{\left(\frac{1+\sin\phi}{1-\sin\phi}\right)^2}$$

To avoid shear failure of soil, the min depth of foundation required,


$$D_{min} = \frac{9}{8} \left(\frac{1 - \sin \phi}{1 + \sin \phi} \right)^2$$

$$D_{min} = \frac{9}{8} ka^2$$

However, as per this equation, as D=0, qu=0; which is not possible. So this equation is not used to calculate bearing capacity.

-> Terzaghi's Theory

- Footing base is rough.
- shallow foundation
- Continuous jooling (Strip footing, L>>B)
- General Shear Failure.

Nc, Nq, $N_Y o Bearing Capacity Factors of Soil.

(depends on <math>\phi$ -value only)

φ	Nc	Na	NX
	J.		

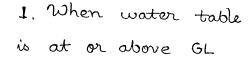
If
$$\phi = 0$$
 (Pune Clay),
 $Nc = 5.7$
 $Nq = 1$
 $Ny = 0$

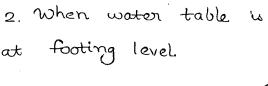
. For pure day,

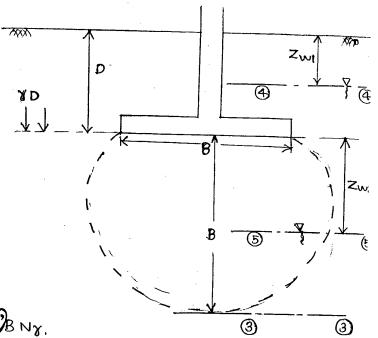
$$\Rightarrow$$
 9 nu = 5.7 C

and is independent of B&D of foundation for pure clay.

$$q_u = CNc + VDNq + 0.5 VBNV$$


$$q_{nu} = q_u - VD.$$


$$= CNC + YD(NQ-1) + 0.5YBNY$$


$$\Rightarrow$$
 9ns = 9nu F

```
* for circular footing
0
\Theta
                    qu = 1.3 CNc + 8DNq + 0.3 8BNx
0
0
       where, B -> diameter of footing
0
0
           * for square footing
                    Qu = 1.3 CNe + 8DNq + 0.4 8BNq
0
0
        0.3, 0.5, 1.3, 0.4 are called shape factors'
0
            * for rectangular footing
0
                   q_u = \left(1 + 0.3 \frac{B}{L}\right) CN_C + YDN_Q + \left(1 - 0.2 \frac{B}{I}\right) 0.5 YBN_Y
0
0
0
       All the above equations are for GSF.
0
          - For LSF, use Cm & Pm to find BC of soil,
\mathbf{O}
0
                      Cm = \frac{2}{3}C & tan \phi m = \frac{2}{3}tan \phi
0
0
               : Qu = Cm Nc' + 8DNq' + 0.5 8BNx'
igoredot
        No, Nm, Ng, are based on pm value.
0
0
           -4 + \phi > 36^{\circ} \Rightarrow GSF
0
                     \phi < 28^{\circ} \Rightarrow LSF
\mathbf{O}
           - It failure strain <5% → GSF
0
\mathbf{O}
                   failure strain 10 to 20% \Rightarrow LSF
Oth sept, > Effect of Water Table on Bearing Capacity of Soil:
                  = CNc + YDNq + 0.5 YBNY
()
                cohesion effect Depth effect width effect.
```

 \bigcirc

- 3 When water table is at a level 3-3. ○ No effect of water table.
- 4. When water table is at level $\Phi \Phi$

$$Q_u = C'Nc + (DDNQ + 0.5)BNQ$$

$$Y_a = \frac{Z_{w_1}Y + (D-Z_{w_1})Y'}{D}$$

5. When water table is at level 5-6

* Approximate Method:

Rw, & Rwz -> water table correction factors

$$Rw_1 = 0.5 \left(1 + \frac{Zw_1}{D}\right) \qquad Rw_2 = 0.5 \left(1 + \frac{Zw_2}{B}\right)$$

$$0.5 \leqslant Rw \leqslant 1$$

```
If WT at footing level:
If we is at GL:
Z_{W_1} = Z_{W2} = 0
                                  Zw_1 = D ; Rw_1 = 1
 Rw1 = Rw2 = 0.5.
                                   Zw2=0; Rw2 = 0.5
                                      If WT is above footing:
If we is below the footing:
                                           Zw2 =0
Rwi = 1 (no correction regd.)
                                            Rw2 = 0.5
If we is at a depth B below booting:
   Rw1 = Rw2 = 1 (no correction regd)
For cohesionless soils,
            qu = 8DNq Rw1 + 0.58BNg. Rw2
 @ If we is at or above GL, Run = Rwz = 0.5
             9u = 8DNq(0.5) + (0.58BN8)(0.5)
 : for cohesionless soils, bearing capacity reduces by 50% when
WT raises to GL.
     In case of cohesive soils, the effect of wI on the
bearing capacity is nogligible.
                  q<sub>nu</sub> = 5.7 C (no'Y' included)
-> Skempton's Theory:
     - For cohesive soils only (\phi = 0)
                    qnu = CNc
     - For strip footing:
                       N_c = 5 \left(1 + \frac{0.2 D}{R}\right) \left[5.14 \le N_c \le 7.50\right]
    - For rectangular booting:
                       N_{c} = 5 \left(1 + \frac{0.2 \, D}{B}\right) \left(1 + \frac{0.2 \, B}{L}\right) \left[6.2 \leq N_{c} \leq 9\right]
```

 Θ

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 \bigcirc

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

0

0

O

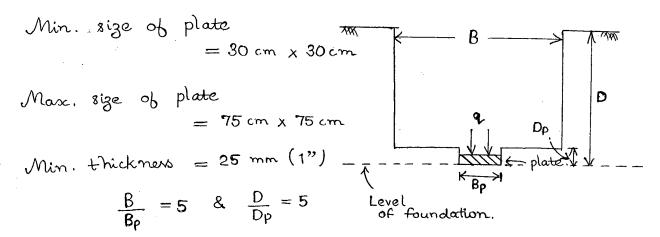
0

O

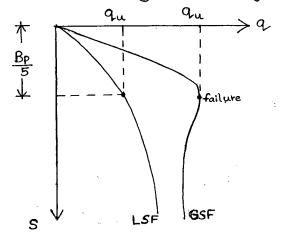
 Θ

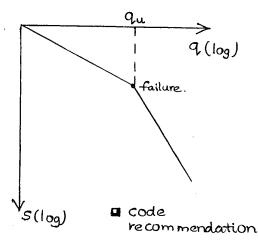
O

O


()

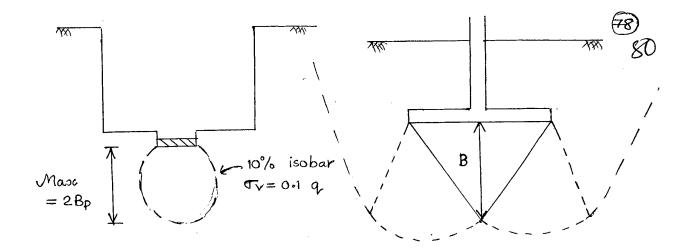
 \bigcirc


-> Plate Load Test.


- to find BC and settlements.

* Specifications:

_ Initially, a seating pressure of 7.5 kPa applied

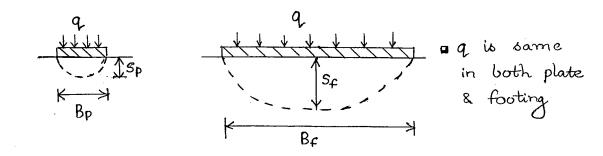

Safe bearing capacity, $q_s = \frac{q_u}{F}$

* Limitations of Plate Load test:

(i) It is a short duration test. Hence not reliable for pure clays. (consolidation settlement occurs for pure clays)

(ii) There is a width effect (qu depends on B in Jerzaghi's theory & Skemptons theory)

(iii) Depth effect. (masc. depth of pressure bulb in plate load test = 2Bp)



- -> Corrections for Plate Load test Results:
 - * Correction for Settlements
 - (i) For Clays

$$\frac{S_F}{S_P} = \frac{B_F}{B_P} \implies S \propto B$$

(ii) For sands.

$$\frac{S_F}{S_P} = \left(\frac{B_F (B_P + 0.3)}{B_P (B_F + 0.3)}\right)^2 \quad B_F \& B_P \text{ in metres}$$

- * Correction for Bearing Capacity
- in For clays

$$q_f = q_p$$
 (qu independent of B)

(ii) For sands

$$\frac{q_{f}}{q_{p}} = \frac{B_{F}}{B_{p}}$$

0

 Θ

O

O

()

 \bigcirc

 \bigcirc

0

0

 \bigcirc

0

0

0

- -> Meyerhof's Theory:
 - For both shallow and deep foundations.

Qu = CNc Scocic + 8DNq. Sq. tq. iq + 0.5 8BNx. Sx. dx. ix

S -> shape factor

D -> depth factor

1 -> load inclination factor

* For $(DL+LL) \rightarrow BC$ obtained by formulae can be used directly.

For DL+LL+WL \Rightarrow above BC is increased by 25% DL+LL+EL \Rightarrow

-> Loads for Settlement Calculation:

* For sands: DL + LL + WL or EL

For clays: Permanent bads (DL + 50% LL)

-> Settlements

* Uniform Settlement: equal settlement everywhere.

* Differential Settlement: more detrimental to struct (additional moments are created)

Differential settlement = 75% of total uniform settlement * Permissible limits:

Sand & Hard, clay

Plastic clay (settlement occurs slowly for plastic clay)

75 mm.

Raft & settlements. Foundations.

75 mm

100 mm.

```
8
```

O1.
$$q_{\text{ns}} = \frac{1}{F} (CN_c)$$
; for clay,

Moually, $F \approx 3$. & Nc = 5.7 for clays.

 $9ns = \frac{1}{3} (C \times 5.7) \approx 2C \Rightarrow \text{unconfined compressive}$ 8trength.

() 02.
$$B = 3 \text{ m}$$
, $\chi = 20 \text{ kN/m}^3$, $\phi = 35^\circ$, $C = 0$, $Nq = 33$, $N_{\chi} = 34.0$

()

()

 \bigcirc

0

0

()

 \bigcirc

()

()

0

0

 \bigcirc

0

 Θ

 \bigcirc

O

0

0

0

()

 \bigcirc

$$= 0 + 10 \times 2 \times 33 + 0.4 \times 34 \times 3 \times 10 = 1068 \text{ kPa}$$

$$= 18 \times 2 \times 33 + 0.4 \times 10 \times 3 \times 34 = 1596 \text{ kPa}$$

$$Rwz = 0.5 \left(1 + \frac{1}{3}\right) = 0.666$$

$$RW2 = 0.00 \left(1 + \frac{3}{3} \right) = 0.000$$

$$q_u = 18 \times 2 \times 33 + 0.4 \times 18 \times 3 \times 34 \times 0.66$$
 { use accurate} = 1672 kPa

$$\gamma_{\alpha} = \frac{\gamma_{Zw_1} + \gamma_{(D-Zw_1)}}{D} = \frac{18 \times 1 + 10 \times (2-1)}{2} = 14$$

$$9u = 14 \times 2 \times 3.3 + 0.44 \times 10 \times 3 \times 34 = 1332 \text{ kPa}$$

$$Q_{ns} = \frac{1}{F} \left(CNC + 8D(Nq-1) + 0.58BN8 \right),$$

$$9ms = \frac{1}{2} (80 \times 6 + 16 \times 1 (1-1) + 0)$$

= 240 kPa

$$q_{ns} = \frac{1}{2} \left(0 \times 37.2 + \frac{16}{20} \times 1 \left(22.5 - 1 \right) + 0.5 \times 10 \times 2 \times 19.7 \right)$$

$$= 270.5$$

$$q_s = \frac{1}{F}(c_{Nc}) + y_D$$

$$C = \frac{1}{2} \times q_{n} = 10 \text{ t/m}^2$$

$$q_s = \frac{1}{2} (10 \times 5.14) + 2 \times 1 = 27.7 + t/m^2$$

5. For design purpose, the condition to be satisfied:

Since grap is not given, qua = qus.

$$9m = \frac{Q}{A} = \frac{1000}{R^2} \text{ k N/m}^2$$

$$9ms = \frac{1}{F} (1.3 \text{ CNc} + 7D(Nq-1) + 0.48BN8).$$

= $\frac{1}{2.5} (0.4 \times 19 \times B \times 42).$

$$\Rightarrow \frac{1000}{B^2} = (0.4 \times 19 \times B \times 42) \times \frac{1}{2.5}$$

$$\Rightarrow \beta = 1.98 \text{m} \approx 2 \text{m}$$

U

(-)

()

 \bigcirc

 \mathbf{O}

0

 \mathbf{O}

0

0

0

0

 \mathbf{O}

0

0

0

 \mathbf{O}

 \mathbf{O}

0

0

•

0

0

0

0

O

O

0

O

O

()

()

007

₍₇6.

or
$$9 \leqslant 95$$

$$q = \frac{300}{8 \times 1} \text{ kN/m}^2$$

$$q_n = q - 8D = \frac{300}{R} - 18 \times 1$$

$$9ms = \frac{1}{F}(CNc) = \frac{1}{3}(60 \times 5.7) = 114$$

$$\frac{300}{B} - 18 = 114$$

:.
$$\beta = 2.27 \text{ m}$$

$$\star$$
 For cohesionless soil \rightarrow use ϕ to decide GSF & LSF For cohesive soil. \rightarrow use C to decide GSF & LSF For $c-\phi$ soil \rightarrow use $\underline{\text{strain}}$ to decide GSF & LSF

Elastic settlement,
$$S_i = \frac{q_n}{E_S} B(1-u^2) I$$
.

$$\frac{S_2}{S_1} = \frac{q_2}{q_1}$$

$$\frac{10}{25} = \frac{92}{7.2/0.3}$$

$$\Rightarrow$$
 $q_2 = 32 t/m^2$

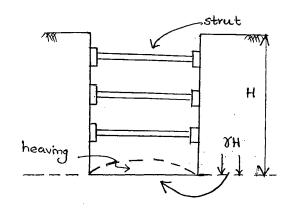
$$Q_{08}$$
. $Q_{n} = q - \gamma D$.

$$0 = 150 - 20 D$$

$$q_1 = 0.3m, \beta_F = 1.5m$$

For sands,

$$\frac{q_F}{q_P} = \frac{B_F}{B_P}.$$


$$\frac{9e}{6} = \frac{1.5}{0.3} \Rightarrow 9e = 30 + 1m^2$$

$$200d = area \times q_{f} = 1.5^{2} \times 30 = 67.5 \text{ tons}$$

-> Braced Excavations - Heave Failure of Bottom

Factor of safety against heave failure, $F = \frac{CNc}{7H}$

$$N_c = 5.7 \text{ (Terzaghi)}$$

= $5 \left(1 + 0.2 \frac{D}{B}\right)$; Skempton's theory



10.
$$N_c = 5\left(1 + 0.2 \times \frac{5}{2.5}\right) = \frac{7}{2}$$
 $\left(0 = H\right)$

$$FOS = \frac{CN_C}{\gamma H} = \frac{20 \times 7}{20 \times 5} = 1.4$$

Bearing Capacity of Eccentric Footings:

For eccentric footings, modified dimensions (reduced) are to be taken to calculate the bearing capacity. The reduced dimensions are taken in a manner that the load acting point should become the CG of modified dimensions

$$B' = 2\left(\frac{B}{2} - ex\right)$$
 & $L' = 2\left(\frac{L}{2} - ey\right)$

Accordingly the modified dimensions B', L', A' are 83 shown below:

$$B' = B - 2e_{\infty}$$

$$L' = L - 2e_{y}$$

$$A' = B'L'$$

 Θ

 \bigcirc

O

O

:
$$Qu = \left(1 + 0.3 \frac{B^2}{L^2}\right) CN_c + YDN_Q + 0.5YB'N_Y \left(1 - 0.2 \frac{B^2}{L^2}\right)$$
Sabe load capacity, $Q_{safe} = A'Q_{s}$

0

0

0

0

O

О

0

0

0

0

0

0

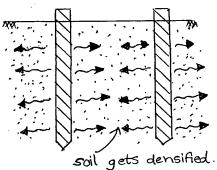
✐

0

О

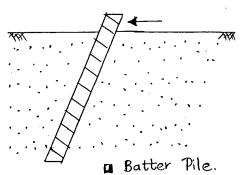
O

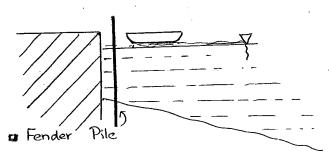
O


0

O

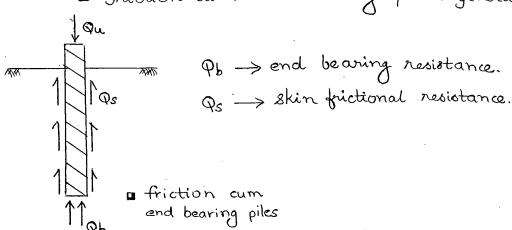
O

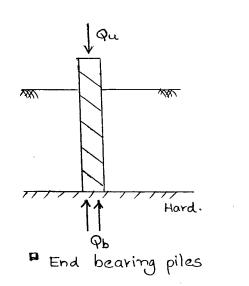

PILE FOUNDATIONS

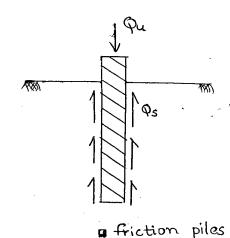

- Deep Foundation.
- Punching shear failure occurs
- -> Necessity of Pile foundation:
 - ib loads are heavy, and soil is poor.
 - _ in expansive soils (like black cotton soil)
 - to transfer loads onto a hard stratum.
 - to resist uplift loads, horizontal loads etc.
 - to reduce settlements.
- -> Classification of Piles:
 - * Based on Junction (or purpose)
 - compaction pile: to compact the soil (loose & medium sand
 - tension pile: to resist uplift loads.
 - batter pile: inclined pile to resist lateral local.
 - anchor pile: to anchor the structure
 - Fender or dulphin pile.: for protection of water front

Soil gets densitied

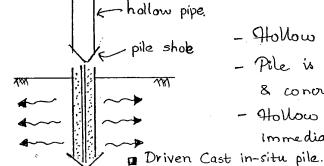
Compaction pile.


* Based on Load Fransfer.


— Iniction Pile: generally in clays.


— End bearing Pile: pile resting on hard stratum

— Iniction cum and bearing pile: generally in sands


[Qu

- * Based on Construction
- Precast driven pile: in loose sand & medium dense
- Driven cast-in-situ pile: in loose gand & "
- Boned cast-in-situ pile: in clays.

- Hollow pipe is driven into soil
- Pile is casted in site using steel rift. 8 concrete in the hollow pipe.
- Hollow pipe is removed using cranes immediately after casting the piles.

-> Pile driving Equipment:

0

0

0

0

0

0

0

0

0

0

0

О

0

О

0

0

0

0

О

О

O

O

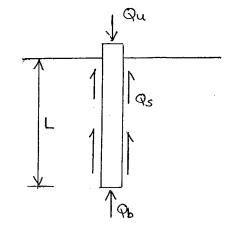
О

O

0

 \bigcirc

- Simple drop hammer
- _ lingle acting steam hammor.
- Double acting steam hammer
- -Diesel hammer
- _ vibratory driving system: least noise. (no hammers used in loose soils).
- -> Load Carrying Capacity of Pile:
 - 1. Static Formulae
 - 2. Dynamic Formulae.
 - 3. Pile load tests.
 - 4. N- Value method (N-SPT value)



* Static Formulae:

$$Qu = Qb + Qs$$

$$= Ab fb + As fs$$

Ab \rightarrow area of pile at pile base $(= \pi/4 d^2)$

 $F_b \Rightarrow \text{bearing capacity of soil at}$ pile base level.

As \rightarrow surface area of pile. (= πdl)

fs \rightarrow 8 hear resistance of 80il, surrounding the pile shaft a) For clays: $(\phi=0)$

C1: cohesion at pile base level.

$$N_c = 9$$
 (for $\phi = 0$)

$$S = C + \sigma + \alpha n \phi$$

 $S = C + 0$.

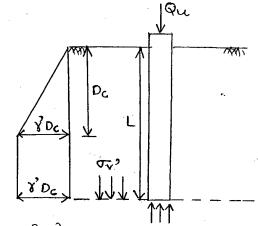
C2: cohesion of soil along the pile shaft.

&: shear mobilisation factor (or) adhesion factor

$$\alpha = 1$$
; for soft clay $\alpha < 1$; for stiff clay.

$$Qu = A_b C_1 N_c + A_s \propto C_2$$

$$Q_{safe} = Q_u$$
F


29th Sept, DONDAY

b) Single Pile in Sand (C=0)

$$Qu = Abfb + Asfs$$

To find to:

or," = effective vertical stress at pile base level.

Dc -> critical depth : depth up to which or, in creases and then remains a constant.

Dc = 10 d to 20 d; depending on soil type

:.
$$fb = \sigma_v' Nq$$

$$\Rightarrow \sigma_v' = \gamma' D_c \quad ; \quad \forall L \geq D_c$$

$$= \gamma' L \quad ; \quad \forall L \leq D_c$$

To find fs:

 $\forall a' \rightarrow \text{ average effective vertical stress. along the pile shaft.}$ $K \rightarrow \text{coeffecient of lateral earth pressure.}$

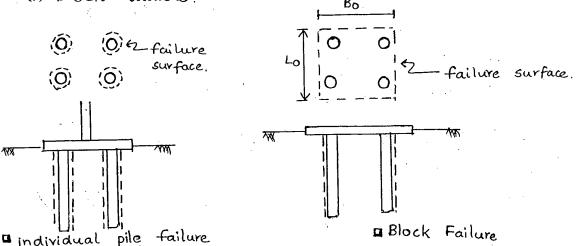
"K" is found out from field in-situ test for pile. (8) ()[k = 1 to 3]; depending on soil type. \bigcirc \bigcirc $d \rightarrow \text{angle of friction blue pile and 80il}$ 0 $d = \phi$; as par BIS \bigcirc \mathbf{O} For Clay: \mathbf{O} Qu = AbC, Nc + As. ac2 0 0 For Sand: Qu = Ab ov' Ng + As K. va'tand 0 0 0 O→ Group Piles 0 - under a column, a min. of 3 piles shall be used. 0 \bigcirc \bigcirc 0 0 S -> min spacing blu c/c of piles. \mathbf{O} 0 S = 3d; for friction piles. 0 = 2.5d; for end bearing piles. O 0 - Benefits of group piling are: 0 a) In oreases reliability. O b, eccentricity is avoided. O - Min spacing is recommended to avoid "stress overlap" Θ O (Due to stress overlap, settlement increases) \mathbf{O} * Pile Group Efficiency, $n_g = \frac{Q_g}{n_i Q_i} \times 100$ \bigcirc

86

 $Q_g \rightarrow \text{total group capacity.}$ $n \rightarrow no$, of piles in the group. $Q_i \rightarrow \text{capacity of single, in isolation.}$ $Q_g \rightarrow \text{capacity of single, in isolation.}$

Mg is the ratio of average capacity of a single pile in a group action to the single capacity of a pile in isolation. (OR) is the ratio of total capacity of a group pile to the sum of capacities of individual piles in isolation.

Ng > 100%; for loose & medium dense sands


Ng < 100%; for dense sand & clays

Loose and medium dense & and gets compacted upon

group piling and : Ng > 100%.

* Modes of failure of Pile Group:

- (i) Individual Pile Failure.
- (ii) Block Failure.

* Pile Group Capacity based on Individual Failure mode Qgi = nQi $= n(AbCiNc + AsQC_2) \rightarrow for clay$

= n (Ab ov' Ng + As K. va' tan d) -> for sand

* Pile Group Capacity based on Block Failure mode:

Qgb = AB. CINC + As C2 \rightarrow for clay

AB. Tr' Nq + As K. Ta' tand -> for sand

 $AB \rightarrow area$ of block = Bo. Lo

As -> perimeter of block xL = 2 (Bo + Lo).L

d is adhesion factor.

✓ =1 for block failure because contact is blu soil & soil.

for individual pile as contact is blu soil & pile. $\alpha < 1$

: Pile group capacity, Qg = Smaller of Qgi & Qgb Sale capacity, = $\frac{Q_9}{F}$

NOTE:

्रे

 \bigcirc

()

0

()

0

()

0

0

0

 \bigcirc

()

 \bigcirc

 \bigcirc

0

0

O

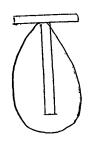
0

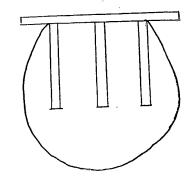
O

0

 \mathbf{O}

 \bigcirc


 \mathbf{O}


0

()

()

Settlement of a group pile is always more than that of a single pile. (due to larger size of pressure bulb)

larger pressure bull → more soil gets compnessed, and : more settlement.

-> Empirikal Formulae to find ng:

1. Feld's Rule.

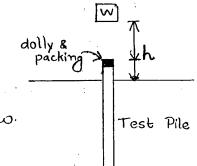
In this rule, for every nearly pile, 1 th capacity is neduced. (for all types of soil)

$$n_g = 1 - \frac{1}{16}$$

$$= \frac{15}{16}$$

$$h_{g} = 1 - 2 \times \frac{1}{16} \qquad h_{g} = 1 - 3 \times \frac{1}{16}$$

$$= \frac{14}{16} / / \qquad = \frac{13}{16} / /$$


$$\eta_g = 1 - \frac{0^{\circ}}{90} \left(\frac{m(n-1) + n(m-1)}{m \cdot n} \right)$$

$$\theta = \tan^{-1}\left(\frac{d}{s}\right)$$

$$d \rightarrow diameter$$
 of pile; $S \rightarrow spacing blw piles$

→ Dynamic Formulae:

S -> set value or settlement por blow.

$$Q_{safe} = Wh\eta_h$$

$$F(s+c)$$

$$c \rightarrow a$$
 constant

2. Hiley's Formula.

$$Q_{safe} = \frac{Wh \eta_h \cdot \eta_b}{F(s + c/2)}$$

$$C = C_1 + C_2 + C_3$$

As this test is based on short term loading, it &3 is suitable only for sand and not for clays.

0

 \bigcirc

()

()

0

0

0

O

0

()

 \bigcirc

Pile Load Test

|2 mm | PSF |

total Settlement

Sabe load is taken as the smaller of the following:

(i) $\frac{2}{3}$ of load corresponding to a settlement of $\frac{12 \text{ mm.}}{6 \text{ mm.}}$ (ii) $\frac{2}{3}$ of load corresponding to a net settlement of $\frac{6 \text{ mm.}}{6 \text{ mm.}}$ (iii) $\frac{1}{2}$ of load corresponding to a total settlement of $\frac{10\%}{6}$ d.

Negative Skin Friction:

When loose soil compacts,
it drags the pile along with

Very

it drags the pile along with

Very

Lc loose

it. Negative skin friction

occurs when settlement of loose

soil due to compaction is more

than the settlement of pile due to

asctornal loading.

** Negative Skin Friction occurs in the case of:

(i) Recently filled upsoil.

(ii) Very loose sand

(iii) Soft clay.

(iv) Due to lowering of WT (o' 1 and settlement increases)

(v) Pile driving operations rearby.

* Negative Skin Friction can be reduced by:

(i) Keeping the surface of pile smooth in areas of loose.

(ii), Providing a shelve to the pile and isolating it from surrounding loose sand.

* To calculate negative skin friction:

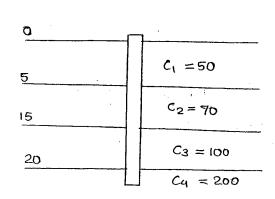
(i) In Clays:

(ii) In Sands:-

$$0$$
 Oct, $\rightarrow F$

1.
$$Q_u = A_b C_1 N_c + A_s \propto C_2$$
.
 $= \frac{\pi}{4} \times 0.3^2 \times 100 \times q + \pi \times 0.3 \times 5 \times 0.3 \times 50$.
 $= 134 \text{ kN}$

2.
$$Q_{safe} = \frac{1}{F} \left(A_b C_1 N_c + A_s \alpha C_2 \right)$$


$$400 = \frac{1}{2.5} \left(0.45 \times 100 \times 9 + 4 \times 0.45 \times L \times 0.75 \times 100 \right)$$

$$\Rightarrow$$
 L = 6.05 m

3.
$$Q_{sqFe} = \frac{1}{F} \left(A_b C_1 N_c + A_s \alpha C_2 \right)$$

$$= \frac{1}{2.5} \left(\frac{\pi}{4} \times 0.5 \times 200 \times 9 + \frac{\pi}{4} \times 0.5 \times 0.4 \times 5 \times 5 + \frac{50 \times 5 + 100 \times 5}{100 \times 5 + 200 \times 5} \right)$$

$$= 669.16 \text{ kN}$$

C2=50

04.

0

0

O

0

0

0 0

0

0

O

O Q)5.

0

0

0

O O

O

O

 \circ

 \bigcirc

⁽⁾66. ()

O O

 \bigcirc

NOTE:

If critical depth is not mentioned in the case of whesionless soils, then assume that Dc is more than length of piles of and take linear vortical stress distribution to estimate capacity of pile.

$$\gamma_{\text{sat}} = 29/cc = 19.613 \text{ kN/m}^3$$

 $\approx 20 \text{ kN/m}^3$

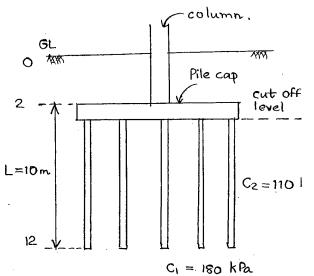
$$\chi_{\omega} = 10 \Rightarrow \chi = 40 \, \text{kN/m}^3$$

$$Q_{u} = Ab \sigma_{v}' Nq + As k. \sigma_{a}' tan \delta$$

$$= \frac{\pi}{4} \times 0.45^{2} \times 45 \times 18 + \pi \times 0.45 \times 4.5 \times 1.2 \left(\frac{0 + 4.5}{2} \right) tan 20^{\circ} + \pi \times 0.45 \times 1.5 \times 1.2 \left(\frac{45 + 45}{2} \right) tan 20^{\circ}$$

$$B_0 = L_0 = 4s + d = 4.5 m$$

= 233 kN


$$Q_{gi} = n Q_i$$

= 25 $\left(\frac{\pi}{4} d^2 \cdot C_i \, N_c + \pi dL \, \alpha \, C_2\right)$
= 27390 KN.

$$Q_{gb} = A_B C_{INC} + A_S C_2$$

$$= B_{0}L_{0} C_{INC} + 2 (B_{0}+L_{0}) L C_2$$

$$= 52605 \text{ kN}.$$

$$B_0 = L_0 = (35+d)$$
.

45 ,

$$Q_{gi} = Q_{gb}.$$

$$n\left(\pi dL \propto C\right) = 4 \times B_{o} \times L C.$$

$$16\left(\pi \times d \times L \times 0.6 C\right) = 4 \left(3s + d\right) L C$$

 \Rightarrow S = 2.18d

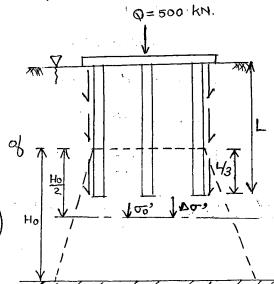
O7. Sabe capacity of single isolated pile,
$$Qi = \frac{1}{F} \left(\frac{\pi}{4} d^2 \times C_1 N_C + \pi d L \times C_2 \right)$$

$$= \frac{1}{2.5} \left(\frac{\pi}{4} \times 0.3 \times 150 \times 9 + \pi \times 0.3 \times 10 \times 0.57 \times 100 \right)$$

$$= 253.05 \text{ kN}$$

$$Qg = n Qi$$

$$\sigma n = \frac{Qg}{Qi} = \frac{5000}{253.06} = 19.75 \text{ no.s} \approx 20$$


09. Rated energy, Wh = 3500 kNcm.

$$Q_{safe} = \frac{Wh \, n_h \, n_b}{F(s + C/2)} =$$

$$S = \frac{25.4}{6} = 4.23 \text{ mm} = \frac{0.423 \text{ cm}}{}$$

$$\therefore \ \, \Theta_{\text{safe}} = \frac{3500 \times 0.8 \times 0.476}{4 \left(0.423 + 1.8/2\right)} = \frac{251 \text{ kN}}{}$$

The given pile group is assumed to be friction pile group and the total load is assumed to be acting at lower $\frac{1}{3}$ rd of length of $\frac{1}{3}$ pile for settlement calculations $\frac{1}{3}$ $\frac{1}{$

0

 Θ

0

0

0

0

0

0

O

0 0

0 0

 \bigcirc

0

0

O

0 O

O

 \mathbf{O}

O

0 O

$$H_0 = 3.667 \text{ m}$$
 $\sigma_0^2 = (3.33 + 3.33 +$

$$\sigma_0^{\circ} = \left(3.33 + \frac{3.667}{2}\right)\hat{\gamma} = 51.63$$

$$\Delta \sigma^2 = \frac{Q}{(B_0 + Z)^2}$$

$$B_0 = 2S + d$$

$$Z = \frac{H_0}{2}$$

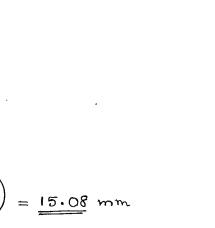
$$= \frac{500}{(1.2 + 1.8335)^2} = 54.335 \text{ kN/m}^2$$

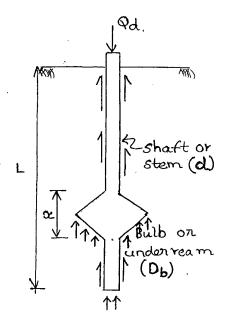
$$S_{f} = \frac{3.667 \times 0.027}{(1+1.05)} \times \log_{10} \left(\frac{51.63+54.335}{51.63} \right) = \frac{15.08}{100} \text{ mm}$$

-> Under-reamed Piles.

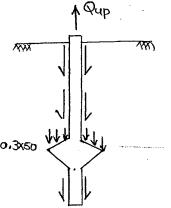
- The bulb provides anchorage against uplift caused by expansive soils.
 - Generally used in B.C soil.
 - Bulb diameter, Db \approx 2.5 d.
 - Boned cast-in-situ piles.

Ultimate downward, load carrying capacity, Qd = $\frac{\Pi}{4}d^2C_1N_c +$ $\frac{\pi}{4} \left(D_b^2 - d^2 \right) C_2 N_C +$

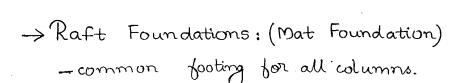

Ultimate uplift resisting capacity,

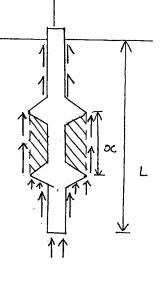

Qup =
$$\frac{\pi}{4}$$
 ($D_b^2 - d^2$) C2 Nc +

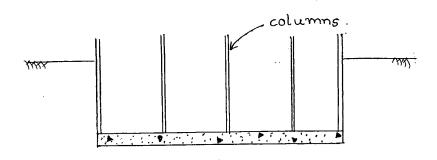
= 300.8 KN


 $\pi d(L-\infty) \ll Ca + self weight.$

$$Q = \frac{77}{4} \left(0.75^{2} - 0.35^{2}\right) \cdot 50xq + 77x0.35 \left(8 - 0.4\right) \times 0.3x50$$



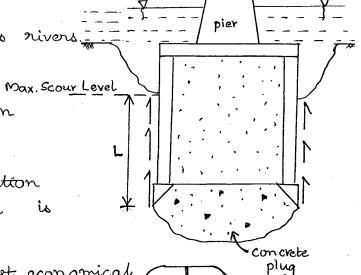

Ca -> aug. cohesion along pile length.



* Double Under-reamed Pile.

$$Qd = \frac{\pi}{4}d^{2}C_{1}N_{c} + \frac{\pi}{4}\left(D_{b}^{2} - d^{2}\right)C_{2}N_{c} + \pi a\left(L-\alpha\right) \propto C_{a} + \pi D_{b}. x. C_{a}.$$

- shallow foundation
- to avoid differential settlement.
 - also used in poor soils it loads are heavy.


-> Well Foundation:

- used for bridges across rivers.

Masc Scour level is moderated at which masc prosion occurs.

Depth of the well foundation below the masc scows level is the 'Grip Length'

- double D shape is most oconomical.

_ As per 15 code of practise, the allowable tilt & shiftare 1 in 60 & 1% of depth of sunk. \bigcirc

O

0

0

()

 \bigcirc

0

0

O

0

0

0

O

0

 \bigcirc

0

 \bigcirc

0

0

 \mathbf{O}

Э

)

)

 \Box

)

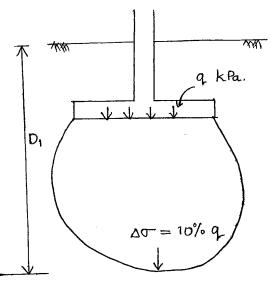
)

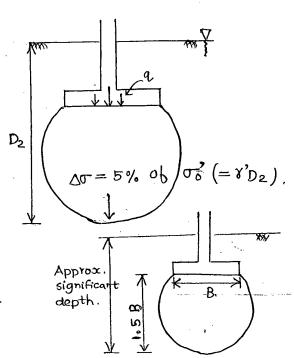
18. SOIL EXPLORATION

 \rightarrow Soil Investigation

* For small sites -> 1 hole at centre.

For areas upto 0.4 ha } 5 holes 1 @ centre with important buildings } 5 holes 1 @ corners


* The min. depth of exploration is equal to significant depth?


Significant depth is the depth at which increase in stress is equal to 10% of intensity of load applied, (=D1).

It can also be explained as the depth (Dz) at which — increase in 8t ress is equal to 5% of overburden pressure at that point.

Significant depth = Higher of D1 & D2

* Approximately significant depth = 1.5 B to 2B, below the footing. As per 15 code, its $\times 1.5$ B.

* Methods of Exploration:

(i) Open trial pits -> upto 3m depth

(ii) Auger boring - suitable for clays & shallow depths (6m) for highways, nailways etc.

(iii) Wash boring - for deep holes, not suitable for hard. stratum, can be used even below wo

(ii) Rotary drilling - for any soil, including rock.

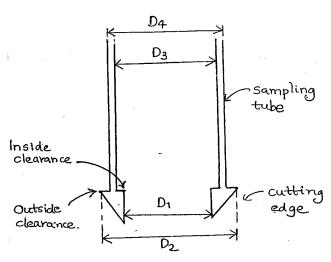
(ii) Rotary drilling - for any soil, including rock.

(ii) Rotary drilling - for any soil, including rock.

(iii) Rotary drilling - for any soil, including rock.

(iv) Percussion drilling - for any soil, including rock.

(iv) Rotary drilling - for any soil, including rock.


* Sampler :-

An equipment to collect soil sample.

-Types of Samplers:

(i) Thin walled Sampler - used to collect undistarted samples (engineering properties)

(ii) Thick walled Sampler - used to collect disturbed samples (index properties)

* Area ratio, Ar = $\frac{D_2^2 - D_1^2}{D_1^2} \times 100$

⊙ To obtain undisturbed sample, Ar ≤ 10%

$$\star$$
 Inside clearance, = $\frac{D_3 - D_1}{D_1} \times 100$

87) 92/

· To obtain undisturbed sample, it should be 0.5 to 3%

$$\star$$
 Outside clearance = $\frac{D_2 - D_4}{D_4}$ x 100

o It shall be 0 to 2%

0

 Θ

0

0

0

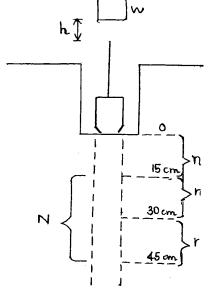
()

 \odot

0

O

0


0

0

- → Standard Penetration Test (SPT)
 - an insitu test.
 - best suited to cohesionless soils.
 - conducted by using split spoon sampler.
 - * SPT value or N-value of soil:
- It is the no: of blows to cause a penetration of 30 cm.
 - N value = $n_2 + n_3$ (at field)
- The more the N-value, the more the strength of soil.

- Height of fall, h = 75 cm
- * Corrections for N-value.
- (i) Overburden Pressure Correction
- to report N-value ato a 8td overburden pressure. $(96 \, \text{kN/m}^2 \approx 100 \, \text{kN/m}^2)$
- H NF is N-value measured at field, the corrected value N' for overburden pressure.

Peck, Hansen & Thornburn (by 15 code also):-

• N' = NF * 0.77
$$\log_{10}\left(\frac{1905}{\sigma_0}\right)$$
 for $\sigma_0' \ge 24 \cdot \frac{1905}{\sigma_0'}$

where $To' \rightarrow$ effective overburden pressure at the depth. (in KN/m')

Correction factor, $\frac{N'}{N_F}$ shall be blu 0.45 & 2.

• N' = N_F *
$$\left(\frac{350}{\sigma_0' + 70}\right)$$
; by Gibbs & Holtz

(ii) Dilatancy Correction.

- It is required only if the soil is fine sand or sitt and if present below the WT.

- 9+ N'>15;

Connected value,
$$N'' = 15 + \left(\frac{N'-15}{2}\right)$$

-9\ N' ≤ 15;

Corrected value, N'' = N' (no correction required)

- → Cone Penetration Test (CPT)
 - insitu test for cohesionless soil.
 - types:
 - (1) Static
 - (ii) Dynamic
- -> Pressuremeter Test

- to measure in-situ stress-strain carre of soil.

- -> Geophysical Methods.
 - (i) Seismic Refraction method. for civil engg, investigation
 - (ii) Seismic Reflection method. for petroleum investigation

→ Soil Stabilisation Methods:

- (1) Mechanical Stabilis ation.
- (i) Cement Stabilis ation:
- (ii) Lime stabilis ation.
- (iv) Chemical stabilisation.
- -> Ground Improvement Techniques:
 - (i) Electro osmosis.

0

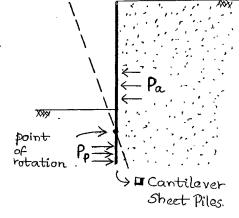
0

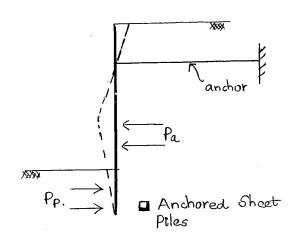
0

()

0

 \mathbf{O}

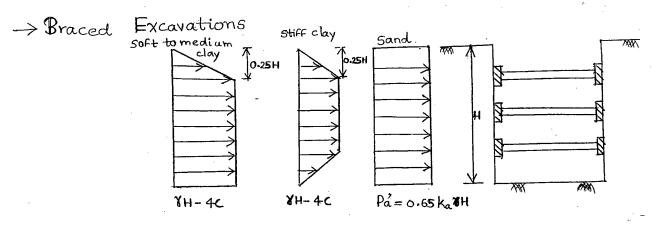

 \mathbf{O}

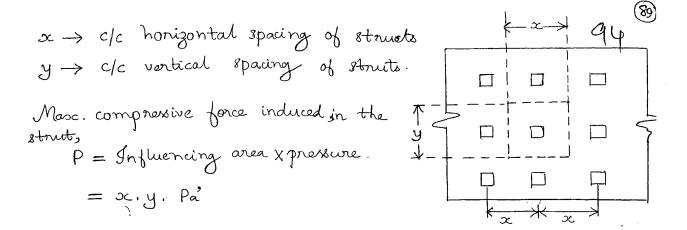

- iii Vibro float ation method
- (iii) Terraprobe method.
- (iv) Lime piles.
- (v) Stone columns
- vi, geotestiles.

SOIL EXPLORATION 19 SHEET PILES

- used to retain soil.

- Point of notation for a <u>cantilever sheet pile</u> is just above the bottom point (used for heights up to (5m))





-> Types of Anchored Sheet Piles

(i) Free Earth Support Type: it depth of penetration shall

(ii) Fixed Earth Support Type: depth of penetration deep

 \bigcirc

0

0

0

 \mathbf{O}

0

A vortical trench 3m wide $86.5 \,\mathrm{m}$ deep is proposed in a cohesionless deposit ($\beta=36\%$ C=0). Assuming first now of structs to be placed at 0.5m below ground surface and spacing blue the structs as 1.5m in the vortical direction and 3m spacing in the horizontal direction, calculate max struct compressive load. Take $\gamma=20 \,\mathrm{kN/m^2}$

$$p_{a'} = 0.65 \text{ ka } \%H$$

$$= 0.65 \left(\frac{1-\sin 36}{1+\sin 36}\right) 20 \times 6.5 = 21.94 \text{ k N/m}^2$$

Masc struct compressive load = 3x1.5x21.94= 98.72 kN