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CHAPTER1 

 

MagneticCircuits 

 

Introduction: 

 

Magneticfluxlinesalwaysformclosedloops.Theclosedpathfollowedbythe flux 
lines is calleda magnetic circuit. Thus, a magnetic circuit provides a path 
formagneticflux,justasanelectriccircuit providesapathfortheflowofelectric 
current.Ingeneral,thetermmagneticcircuitappliestoanyclosed pathinspace, but in 
the analysis of electro-mechanical and electronic system this term is 
specificallyusedforcircuitscontainingamajorportionofferromagneticmaterials. The 
study of magnetic circuit concepts is essential in the design, analysis and 
application of electromagnetic devices like transformers, rotating machines, 
electromagneticrelaysetc. 

MagnetomotiveForce(M.M.F): 

 

Flux is produced round any current – carrying coil. In order to produce the required 
flux density, the coil should have the correct number of turns. The product of the 
currentandthenumberofturnsisdefinedasthecoilmagnetomotiveforce(m.m.f). 

IfI=Currentthroughthecoil(A) N = 
Number of turns in the coil. 

Magnetomotiveforce=Currentxturns 

SoM.M.F=IXN 
TheunitofM.M.F.isampere–turn(AT)butitistakenasAmpere(A)sinceN has no 
dimensions. 

MagneticFieldIntensity: 

MagneticFieldIntensityisdefinedasthemagneto-motiveforceperunitlengthofthe 
magnetic flux path. Its symbol is H. 

 

 

 
Wherelisthemeanlengthofthemagneticcircuitinmeters.Magneticfieldintensityisalso called 
magnetic field strength or magnetizing force. 



Permeability:- 

 

Everysubstancepossessesacertainpowerofconductingmagneticlines 
of force. For example, iron is better conductor for magnetic lines of force than air (vaccum) . 
Permeabilityofamaterial(μ)isitsconductingpowerformagneticlinesofforce.Itistheratio of the 
flux density. (B) Produced in a material to the magnetic filed strength (H). 

 

 
Reluctance: 

Reluctance(s)isakintoresistance(whichlimitsthe electricCurrent). 

Fluxinamagneticcircuitislimitedbyreluctance.Thusreluctance(s)isa measureofthe opposition 
offered by a magnetic circuit to the setting up of the flux. 
 

Reluctanceistheratioofmagnetomotiveforcetotheflux.Thus 
 
 

 

Itsunitisampereturnsperwebber(orAT/wb). 
 
Permeance:- 

Thereciprocalofreluctanceiscalledthepermeance(symbolA). Permeance (A) 

= 1/S wb/AT 

TurnThasnounit. 

Hencepermeanceisexpressedinwb/AorHenerys(H). 

 
B.H.Curve: 

Place a piece of an unmagnetised iron bar AB within the field of a 

solenoid to magnetise it. The field H produced by the solenoid, is called 

magnetisingfield,whosevaluecanbealtered(increasedordecreased)by 



changing (increasing or decreasing) the current through the solenoid. If we 

increase slowly the value of magnetic field (H) from zero to maximum value, 

the value of flux density (B) varies along 1 to 2 as shown in the figure and the 

magnetic materials (i.e iron bar) finally attains the maximum value of flux 

density (Bm) at point 2 and thus becomes magnetically saturated. 

 

Fig.2.1 

Now if value of H is decreased slowly (by decreasing the current in the 

solenoid) the corresponding value of flux density (B) does not decreases along 

2-1 butdecreases somewhatlessrapidlyalong 2 to 3. Consequentlyduringthe 

reversalof magnetization,thevalue of B is notzero, but is '13' atH= 0. Inother 

wards, during the period of removal of magnetization force (H), the iron bar is 

not completely demagnetized. 

 
In order to demagnetise the iron bar completely, we have to supply the 

demagnetisastion force (H) in the opposite direction (i.e. by reserving the 

directionofcurrentinthesolenoid).ThevalueofBisreducedtozeroat point 4, when 

H='14'. This value of H required to clear off the residual magnetisation, is 

known as coercive force i.e. the tenacity with which the material holds to its 

magnetism. 

 
If after obtaining zero value of magnetism, the value of H is made more 

negative, the iron bar again reaches, finally a state of magnetic saturation at 

the point 5, which represents negative saturation. Now if the value of H is 

increasedfromnegativesaturation(='45')topositivesaturation(='12')a 



curve '5,6,7,2' is obtained. The closed loop "2,3,4,5,6,7,2" thus represents one 

complete cycle of magnetisation and is known as hysteresis loop. 



CHAPTER 

02COUPLEDCIRCUITS 

Itisdefinedastheinterconnectedloopsofanelectricnetworkthroughthe 
magneticcircuit. 

Therearetwotypesofinducedemf. 

(1)StaticallyInducedemf. 
(2)DynamicallyInducedemf. 

Faraday’s LawsofElectro-Magnetic: 
Introduction→FirstLaw:→ 
Wheneverthemagneticfluxlinkedwithacircuitchanges,anemfisinducedinit. 
OR 
Wheneveraconductorcutsmagneticfluxanemfisinducedinit. 
SecondLaw:→ 
Itstatesthatthemagnitudeofinducedemfisequaltotherateofchangeofflux linkages. 

OR 
Theemfinducedisdirectlyproportionaltotherateofchangeoffluxand number 
of turns 

Mathematically: 

e
d

dt 

e∝N 

Or 
 

Wheree=inducedemf 

N=No.ofturns φ 

= flux 

‘-ve’signisduetoLenz’sLaw 

 

Inductance:→ 

ItisdefinedasthepropertyofthesubstancewhichopposesanychangeinCurrent&flux. 

Unit:→Henry 



Fleming’sRightHandRule:→ 

Itstatesthat“holdyourrighthandwithfore-finger,middlefingerandthumbatrightangles 
to each other. If the fore-finger represents the direction of field, thumb represents the 
direction of motion of the conductor, then the middle finger represents the direction of 
induced emf.” 

Lenz’sLaw:→ 

Itstatesthatelectromagneticallyinducedcurrentalwaysflowsinsucha 
directionthattheactionof magneticfieldsetupbyittendstoopposethevary cause 
which produces it. 
OR 

Itstatesthatthedirectionoftheinducedcurrent(emf)issuchthatit opposesthe change 
of magnetic flux. 

 

(2)DynamicallyInducedemf:→ 

 

Inthiscasethefieldis stationaryandtheconductorsarerotatinginan uniformmagnetic 
fieldatfluxdensity‘B”Wb/mt2andtheconductorislying perpendiculartothemagnetic field. Let 
‘l’is the length of the conductor and it moves a distance of ‘dx’ nt in time ‘dt’ second. 
 

Theareasweptbytheconductor=l.dx 
Hencethefluxcut=ldx.B 
Changeinfluxintime‘dt’second= 

 

E=Blv 
Iftheconductorismakinganangle‘θ’withthemagneticfield,then 

e=Blvsinθ 



(1) StaticallyInducedemf:→ 
Heretheconductorsareremaininstationaryandfluxlinkedwithit changes by 
increasing or decreasing. 

Itisdividedinto twotypes. 
(i) Self-inducedemf. 
(ii) Mutually-inducedemf. 
(i) Self-inducedemf:→Itisdefinedastheemfinducedinacoilduetothe change 
of its own flux linked with the coil. 

 

 
Ifcurrentthroughthecoilischangedthenthefluxlinkedwithitsownturn will 
also change which will produce an emf is called self-induced emf. 

Self-Inductance:→ 
Itisdefinedasthepropertyofthecoilduetowhichitopposesany change 
(increase or decrease) of current or flux through it. 

Co-efficientofSelf-Inductance(L):→ 
Itisdefinedastheratioofweberturnsperampereofcurrentinthecoil. 
OR 
Itistheratiooffluxlinkedperampereofcurrentinthecoil. 

1stMethodfor‘L’:→ 

 

WhereL=Co-efficientofself-induction N 
= Number of turns 

φ=flux 
I=Current 



2ndMethodforL:→ We 
know that 

 

⇒LI=Nφ 
⇒−LI=−Nφ 

 

WhereL=Inductance 
 

e=1volt 

L=1Henry 

Acoilissaidto beaself-inductanceof1Henryif 1voltisinducedinit. When the 
current through it changes at the rate of 1 amp/ sec. 

 
3rdMethodforL:→ 

 

WhereA=Areaofx-sectionofthecoil N = 
Number of turns 

L=Lengthofthecoil 



(ii) MutuallyInducedemf:→ 
Itis definedas theemf inducedinonecoildue tochangeincurrentin other coil. 
Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will be 
induced in coil ‘B’ due to change of current in coil ‘A’ by changing the 
position of the rheostat. 

 

 

MutualInductance:→ 
Itisdefinedas theemf inducedincoil ‘B’duetochangeofcurrentincoil ‘A’ is the 
ratio of flux linkage incoil ‘B’ to 1amp. Of current incoil ‘A’. 

Co-efficientofMutualInductance(M): 
Coefficientofmutualinductancebetweenthetwocoilsisdefinedasthe 
weber-turns in one coil due to one ampere current in the other. 

 
1stMethodfor‘M’:→ 

 

N2 = Number of turns 
M=MutualInductance 
φ1 = flux linkage 
I1=Currentinampere 

2ndMethodforM:→ 
We know that 

 

⇒MI2=N2φ1 
⇒−MI1=N2φ1 



 

Where 

 

eM=−1VOLT 
ThenM= 1Henry 
A coil is said tobe a mutual inductance of 1Henrywhen 1 volt isinducedwhen 
the current of 1 amp/sec. is changed in its neighbouring coil. 

3rdMethodforM:→ 

 

Co-efficientofCoupling: 
Considertwo magneticallycoupledcoilshavingN1andN2turnsrespectively. 
Their individual co-efficient of self-inductances are 

 

The fluxφ1producedincoil‘A’duetoacurrentofI1 ampereis 

 

 

 

 

Supposeafractionofthis fluxi.e.K1φ1 islinkedwithcoil‘B’ Similarly the 

flux φ2 produced in coil ‘B’due to I2 amp. Is 



 

Supposeafractionofthis fluxi.e.K2φ2 islinkedwithcoil‘A’ Multiplying 

equation (1) & (2) 

 

 

Where‘K’isknownastheco-efficientofcoupling. 
Co-efficientofcouplingisdefinedastheratioofmutualinductance between 
two coils to the square root of their self- inductances. 

InductancesInSeries(Additive):→ 

 

 

 

LetM=Co-efficientofmutualinductance 

L1=Co-efficientofself-inductanceoffirstcoil. 
L2=Co-efficientofself-inductanceofsecondcoil. EMF 
induced in first coil due to self-inductance 

 

Mutuallyinducedemfinfirstcoil 



 

EMFinducedinsecondcoilduetoselfinduction 

 

Mutuallyinducedemfinsecondcoil 

 

Totalinducedemf 
E=eL1+eL2+em1+em2 

If‘L’istheequivalentinductance,then 

 

InductancesInSeries(Substnactive):→ 

 

 

 

LetM=Co-efficientofmutualinductance 
L1=Co-efficientofself-inductanceoffirstcoil 
L2-=Co-efficientofself-inductanceofsecondcoil Emf 
induced in first coil due to self induction 

 

Mutuallyinducedemfinfirstcoil 

 



Emfinducedinsecondcoildueto self-induction 

 

Mutuallyinducedemfinsecondcoil 

 

Totalinducedemf 

e=eL1+eL2+eM1+eM2 

Then 
 

InductancesInParallel:→ 

 

 

 

Lettwo inductancesofL1&L2areconnectedinparallel 
Lettheco-efficentofmutualinductancebetweenthemis M. I-
i1+i2 

 



If‘L’istheequivalentinductance 

 

Equatingequation(3)&(5) 

 

Whenmutualfieldassist. 

 

Whenmutualfieldopposes. 



Exp.-01: 
TwocoupledcolshaveselfinductancesL1=10×10-3HandL2=20×10-3H.The 
coefficient of coupling (K) being 0.75 in the air, find voltage in the 
secondcoilandthefluxoffirstcoilprovidedthesecondcoilshas500turns and 

thecircuitcurrentisgivenbyi1=2sin314.1A. 
Solution: 
M=K√𝐿1𝐿2 

M=0.75√10×10−3×20×10−3 

⇒M=10.6×10−3H 

Thevoltageinducedinsecondcoilis 
𝑑𝑖1 

V2=M 
𝑑𝑡 

=10.6×10-3×2×314cos314dt. 

Themagneticcircuitbeinglinear, 

 

 

Exp.02 
Findthetotalinductanceofthethreeseriesconnectedcoupledcoils.Where the 
self and mutual inductances are 

L1=1H,L2 =2H,L3=5H 
M12=0.5H,M23=1H,M13=1H 
Solution: 
LA =L1 +M12 +M13 

=1+20.5+1 
=2.5H 
LB=L2 +M23 +M12 

=2+1+0.5 
=3.5H 
LC=L3 +M23 +M13 

=5+1+1 
=7H 
Totalinductancesare 



Lea =LA+LB+Lc 

=2.5+3.5+7 
=13H(Ans) 



CHAPTER3 

CircuitElementsandanalysis 

 

1.1 Voltage 

 

Energy is required for the movement of charge from one point to another. Let W 

Joules of energy be required to move positive charge Q columbs from a point a to 

pointb in a circuit. We say thata voltage exists between the two points. The voltageV 

between two points may be defined in terms of energy that would be required if a 

charge were transferred from one point to the other. Thus, there can be a voltage 

between two points even if no charge is actually moving from one to the other. 

Voltage between a and b is given by 

 

V=
W

J/C Q 

 

HenceElectricPotential(V)=
Workedare(W)inJoules 

Charge(Q)incolumbs 

 
Current: 

 

An electric currentis the movement of electric charges along a definite path. In case of 

a conductor the moving charges are electrons. 

The unit of current is the ampere. The ampere is defined as that current which when 

flowing in two infinitely long parallel conductors of negligible crosssection, situated 1meter 

apart in Vacuum, produces between the conductors a force of 2 x 10-7Newton per metre 

length. 

Power : Power is defined as the work done per unit time. If a field F newton acts for t 

seconds through a distance dmetres alonga straightline, work done W = Fxd N.m. or J. The 

power P, either generated or dissipated by the circuit element. 

P=
w


Fxd 

t t 



Power can also be written as Power = 
Work 

time 
 

=  
Work 

Charge 
x
Charge


Time 

VoltagexCurrent 

 

P=VxIwatt. 

 

Energy: Electric energy W is defined as the Power Consumed in a given time.Hence, if 

currentIAflowsinanelementoveratimeperiodtsecond,whenavoltageVvoltsisapplied across it, 

the energy consumed is given by 

W=Pxt=VxIxtJorwatt.second. 

 

The unit of energy W isJoule(J) or watt. second.However, in practice, the unit of 

energy is kilowatt. hour (Kwh) 

1.2 Resistance: Accordingto Ohm's law potential difference (V) acrossthe ends of a 

conductor is proportional to the current(I) flowing through the conductor at a constant 

temperature. Mathematically Ohm's law is expressed as 

 

 

 

 

OrR= 

VI or V = R x I 

 
V

whereRistheproportionalityconstantandisdesignatedastheconductor 

I 

resistance and has the unit of Ohm(). 

 

Conductance :Voltage is induced in a stationary conductor when placed in a varying 

magnetic field. The induced voltage (e) is proportional to the time rate of change of 

current, di/dt producing the magnetic field. 

Thereforee
di 

dt 

 

Ore = L
di 

dt 



eandiarebothfunctionoftime.TheproportionalityconstantLiscalledinductance. 

The Unit of inductance is Henery (H). 

 

Capacitance : A capacitor is a Physical device, which when polarized by an electric 

fieldby applying a suitable voltage across it, storesenergy in the form of a charge 

separation. 

Theabilityofthecapacitortostorechargeismeasuredintermsofcapacitance. 

Capacitenceofa capacitorisdefinedasthecharge storedperVolt applied. 

 

C=
q


Coulomb
Farad 

v Volt 

 

1.3 ActiveandpassiveBranch: 

 

A branch is said to be active when it contains one or more energy sources. A passive 

branch does not contain an energy source. 

Branch:Abranchisanelementofthe networkhavingonlytwoterminals. 

 

Bilateralandunilateralelement: 

 

A bilateral element conducts equally well in either direction. Resistors and inductors 

are examples of bilateralelements. When the current voltage relations are different for 

the two directions of current flow, the element is said to be unilateral. Diode is an 

unilateral element. 

Linear Elements: When the current and voltage relationship in an element can be 

simulated by a linear equation either algebraic, differential or integral type, the 

element is said to be linear element. 

Non Linear Elements : When the current andvoltage relationship in an element can 

not besimulated by a linear equation, the element is said to be non linear elements. 

1.4 Kirchhoff'sVoltage Law(KVL) : 

 

ThealgebraicsumofVoltages(orvoltagedrops)inanyclosedpathorloopisZero. 



ApplicationofKVLwithseriesconnectedvoltagesource. 

 

 

Fig. 1.1 

 

V1+V2–IR1–IR2=0 

 

=V1+V2=I(R1+R2) 

 

I = 
V1V2 

R1R2 

 

ApplicationofKVLwhilevoltagesourcesare connectedinoppositepolarity. 
 

Fig. 1.2 

V1–IR1–V2–IR2–IR3=0 

 V1–V2=IR1+IR2+IR3 

 V1–V2=I(R1+IR2+IR3) 



 I = 
V1V2 

 

R1R2R3 

 

Kirchaoff'sCurrentLaw(KCL): 

 

Thealgebraicsumof currentsmeetingatajunctionormodeiszero. 

 

Fig. 1.3 

Considering five conductors, carrying currents I1, I2, I3, I4and I5meeting at a point O. 

Assuming the incoming currents to be positive and outgoing currents negative. 

I1+(-I2)+I3+(-I4)+I5=0 I1– 

I2+ I3– I4+ I5= 0 

I1+I3+I5=I2+I4 

Thus above Law can also be stated as the sum of currents flowing towards any 

junction in an electric circuit is equal to the sum of the currents flowing away from 

that junction. 

Voltage Division (Series Circuit) 

 

Consideringavoltagesource (E)withresistorsR1andR2inseriesacrossit. 
 

 

Fig. 1.4 



 

 

 

 
Voltage drop across R1=I.R1= 

I = 

 

 

E.R1 

ER1

R2 

R1R2 

 
SimilarlyvoltagedropacrossR2=I.R2= 

 

 

E.R1 
 

R1R2 

 

 

 

 

Current Division: 

 

Aparallelcircuitactsasacurrentdividerasthecurrentdividesinallbranchesina parallel 

circuit. 

 

Fig. 1.5 

 

Fig.shownthecurrentIhasbeendividedintoI1andI2intwoparallelbrancheswithresistances R1and 

R2while V is the voltage drop across R1and R2. 

 

I1=
V 

R1 

and I2
2 

 

LetR = Totalresistance of the circuit. 

 

Hence 
1
= 1


1 

R 

 
 R= 

R1 R2 
 

 

R1R2 
 

R1R2 

V 

R 



I =
V

R 

V 

R1R2 

R1R2 


V(R1R2) 

R1R2 

 

But=V =I1R1=I2R2 

 
R1R2


 I=I1R1

R1 


R2




 I = 

I1(R1R2) 

R2 

 

 

Therefore 

 

 

Similarlyitcanbederivedthat 
 

I1= 
IR2 

R1R2 

I2= 
IR1 

R1R2 



c d 

R4 

p 

R1 V3 R8 

a  b e 

R2 

K h g f 

 

NETWORKANALYSIS 

Differenttermsaredefined below: 

1. Circuit:Acircuitisaclosedconductingpaththroughwhichanelectriccurrenteither 

. flowor is intended flow 

2. Network: Acombinationofvariouselectricelements,connectedinany manner. 

Whatsoever, is called an electric network 

3. Node:itisanequipotentialpointatwhichtwo ormore circuitelements are joined. 

4. Junction:it isthat point ofa network wherethree or morecircuit elements are joined. 

5. Branch:itisapartofanetworkwhichliesbetweenjunctionpoints. 

6. Loop:It is a closedpath in a circuit in which no element or node is accounted more than 

once. 

7. Mesh:Itisaloopthatcontainsnootherloopwithinit. 

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. ofi) circuit elements ii) 

nodes iii) junction points iv) branches and v) meshes. 
 

R5 
 

 

 

 

 

 

R6 
 

 

 

 

 

 

 

 

 

 

 

 

V1 R7 
 

 

 

 

 

 

 

 

 

R3 R9 V2 



Solution:i) no. of circuit elements= 12 (9 resistors + 3 voltage sources) 

ii) no. of nodes =10 (a, b, c, d, e, f, g, h, k, p) 

iii) no. of junction points =3 (b, e, h) 

iv) no.ofbranches=5(bcde,be,bh,befgh,bakh) 

v) no.of meshes = 3 (abhk, bcde, befh) 

3.2 MESH ANALYSIS 

Mesh and nodal analysis are two basic important techniques used in finding solutions 

foranetwork.Thesuitabilityofeithermeshornodalanalysistoaparticularproblemdepends mainly 

on the number of voltage sources or current sources .If a network has a large number of 

voltage sources, it is useful to use mesh analysis; as this analysis requires that all the sources 

in a circuit be voltage sources. Therefore, if there are any current sources in a circuit they are 

to be converted into equivalent voltage sources,if, onthe other hand, the network has more 

current sources,nodal analysis is more useful. 

Mesh analysis is applicable only for planar networks. For non-planar circuits meshanalysis 

is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without 

crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover. 

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a 

planar circuit which looks like a non-planar circuit. It has already been discussed that a loopis 

a closed path. A mesh is defined as a loop which does not contain anyotherloopswithinit. To 

apply mesh analysis, our first step is to check whether the circuit is planar or not and the 

second is to select mesh currents. Finally, writing Kirchhoff‘s voltage law equations in terms 

of unknowns and solving them leads to the final solution. 

 

 
 

(a) (b)  (c) 

Figure 3.2 

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the 

network.LetusassumeloopcurrentsI1andI2withdirectionsasindicatedinthefigure. 



a b c 

R2 

R4 

± I1 

f e d 

Considering the loop abefa alone, we observe that current I1is passing through R1,and (I1-I2) is 

passing through R2.By applying Kirchhoff’s voltage law, we can write 

Vs.=I1R1+R2(I1-I2) (3.1) 

 

 

 

 

R1 R3 
 

 

 

 

Vs 

 

 

 

 

 

Figure 3.3 

Similarly, if we consider the second mesh bcdeb, the current I2is passing through 

R3and R4,and (I2– I1) is passing through R2.By applying Kirchhoff’s voltage law around the 

second mesh, we have 

R2(I2-I1)+R3I2+R4I2=0 (3.2) 

 

 

Byrearrangingtheaboveequations,thecorrespondingmeshcurrentequationsare 

I1(R1+R2) - I2R2=Vs. 

-I1R2+(R2+R3+R4)I2=0 (3.3) 

 

 

By solving the above equations, we can find the currents I1and I2,.If we observe 

Fig.3.3, the circuit consists of five branches and four nodes, including the reference node.The 

number of mesh currents is equal to the number of mesh equations. 

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of 

mesh current would be 5-(4-1)=2. 

I2 



IngeneralwehaveBnumberofbranchesandNnumberofnodesincludingthe reference node 

than number of linearly independent mesh equations M=B-(N-1). 

 

 

 

 

 

 

 

 

Example3.2 Writethe mesh 

 

 

current equations in the circuit shown 10 V 

 

 

infig 3.4 anddetermine the currents. 

 

 

Figure 3.4 

Solution: Assume two mesh currents in the direction as indicated in fig. 

3.5.Themeshcurrentequationsare 

 

 

5 Ω 

 

 

10V I1 I2 10Ω 

2 Ω 50V 

 

 

Figure 3.5 

5I1+2(I1-I2)=10 

1012+2(12-11)+50=0 (3.4) 

Wecanrearrangetheaboveequationsas 7I1-

2I2=10 

-2I1+12I2=-50 (3.5) 

Bysolvingtheaboveequations,wehaveI1=0.25A,andI2= -4.125 

5Ω 10Ω 

2Ω 

50v 



Here the current in the second mesh I2,is negative; that is the actual current I2flows opposite to 

the assumed direction of current in the circuit of fig .3.5. 

Example3.3DeterminethemeshcurrentI1inthecircuitshowninfig.3.6. 

 

 

10Ω 2Ω   

 

 

5Ω I2 + 10V 

I1 1Ω 

50V 

3Ω 5V 

I3 
 
 

 

Figure 3.6 

 

 

Solution:From the circuit, we can from the following three mesh equations 

10I1+5(I1+I2)+3(I1-I3)=50 (3.6) 

2I2+5(I2+I1)+1(I2+I3)=10 (3.7) 

3(I3-I1)+1(I3+I2)=-5 (3.8) 

Rearrangingtheaboveequationsweget 

18I1+5I2-3I3=50 (3.9) 

5I1+8I2+I3=10 (3.10) 

-3I1+I2+4I3=-5 (3.11) 

Accordingto theCramer’s rule 

‐ 



V2 

 

 

I1 

 

 

I2 

 

 

 

I3 R2 



 





 







5 










5 8 




50 5 3


10 8 

I1=
5 1 

1


4
=

1175 

18 5 3 356 

5 8 1

3 1 4




OrI1= 3.3ASimilarly, 

18 50 3

 
10 1



I=
3 5 4

=
355 

218 5 
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OrI2=-0.997A (3.12) 

 
18 5 50
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3 

18 5 3

 
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5 8 1

3 1 4





OrI3=1.47A (3.13) 

I1=3.3A,I2=-0.997A,I3=1.47A 

3.3 MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be writtenby 

inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7 

The loop equation are I1R1+ R2(I1-I2) =V1 R1

 R3R4 
 

 

 

 

 

 

V1  R5 

 

 

 

 

Figure 3.7 



R2(I2-I1)+I2R3=-V2 3.14 

R4I3+R5I3=V2 3.15 

Reorderingtheaboveequations,wehave 

(R1+R2)I1-R2I2=V1 3.16 

-R2I1+(R2+R3)I2=-V2 3.17 

(R4+R5)I3=V2 3.18 

Thegeneralmeshequationsforthreemeshresistivenetworkcanbewrittenas 

R11I1R12I2R13I3= Va 3.19 

R21I1+R22I2R23I3=Vb 3.20 

R31I1R32I2+R33I3=Vc 3.21 

Bycomparingtheequations3.16,3.17and3.18withequations3.19,3.20and3.21 respectively, the 

following observations can be taken into account. 

1. The self-resistancein each mesh 

2. Themutualresistancesbetweenallpairsofmeshesand 

3. Thealgebraic sumof thevoltagesineachmesh. 

The self-resistance of loop 1, R11=R1+R2, is the sum of the resistances through which 

I1passes. 

The mutual resistance of loop 1, R12= -R2, is the sum of the resistances common to loop 

currents I1and I2.If the directions ofthe currents passing through the common resistances are 

the same, the mutual resistance will have a positive sign; and if the directions of the currents 

passing through the common resistance are opposite then the mutual resistance will have a 

negative sign. 

Va=V1is the voltage which drives the loop 1. Here the positive sign is used if 

the direction of the currents is the same as the direction of the source. If the current 

direction is opposite to the direction of the source, then the negative sign is used. 

Similarly R22=R2+R3and R33=R4+R5are the self-resistances of loops 2 and 3 

respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31=0, R32=0 are the 

sums of the resistances common to the mesh currents indicated in their subscripts. 

Vb=-V2,Vc=V2arethesumofthevoltagesdrivingtheirrespectiveloops. 
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Example3.4writethemeshequationforthecircuitshowninfig.3.8 
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Figure3.8 

Solution: thegeneralequationforthreemeshequationare 

R11I1R12I2R13I3=Va (3.22) 

R21I1+R22I2R23I3=Vb (3.23) 

R31I1R32I2+R33I3=Vc (3.24) 

Considerequation3.22 

R11=selfresistanceof loop1=(1Ω+3Ω+6Ω)=10Ω 

R12=themutual resistancecommon toloop 1and loop2 =-3 Ω 

Herethenegativesignindicatesthatthecurrentsareinoppositedirection. R13= 

the mutual resistance common to loop 1 & 3= -6 Ω 

Va=+10 V,the voltagethe driving theloop 1. 

HerehepositivesignindicatestheloopcurrentI1isinthesamedirectionasthe source element. 

Thereforeequation3.22canbewrittenas 



10I1-3I2-6I3=10V (3.25) 

ConsiderEq.3.23 

R21=themutual resistancecommon toloop 1and loop2 =-3 Ω 

R22= self resistance of loop 2=(3Ω+ 2 Ω +5 Ω) =10 Ω 

R23=0,thereisnocommonresistancebetweenloop2and3. Vb= -

5 V, the voltage driving the loop 2. 

ThereforeEq. 3.23 canbe written as 

-3I1+10I2=-5V (3.26) 

ConsiderEq.3.24 

R31=themutualresistancecommontoloop1andloop3=-6Ω R32= the 

mutual resistance common to loop 3 and loop 2 = 0 R33= self 

resistance of loop 3=(6Ω+ 4 Ω) =10 Ω 

Vc=the algebraicsumofthevoltagedrivingloop3 

=(5V+20V)=25V (3.27) 

Therefore,Eq3.24canbewrittenas-6I1+10I3=25V 

-6I1-3I2-6I3=10V 

-3I1+10I2=-5V 

-6I1+10I3=25V 

3.4 SUPERMESHANALYSIS 

Suppose any of the branches in the network has a current source, then it is slightly difficult to 

apply mesh analysis straight forward because first we should assume an unknown voltage 

across the current source, writing mesh equation as before, and then relate the source current 

totheassignedmeshcurrents.Thisisgenerallyadifficultapproach.Onwaytoovercomethis 

difficulty is by applying the supermesh technique. Here we have to choose the kind of 

supermesh. A supermesh is constituted by two adjacent loops that have a common current 

source. As an example, consider the network shown in the figure 3.9. 
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Figure3.9 
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HerethecurrentsourceIisinthecommonboundaryforthetwomeshes1and2.Thiscurrent source 

creates a supermesh, which is nothing but a combination of meshes 1 and 2. 

R1I1+ R3(I2-I3)=V 

Or R1I1+R3I2-R4I3=V 

Consideringmesh3,wehave 

R3(I3-I2)+ R4I3=0 

Finally the current I fromcurrent source is equal to the difference between two mesh currents 

i.e. 

I1-I2=I 

wehavethusformedthreemeshequationswhichwecansolveforthethreeunknown currents in the 

network. 

Example3.5.Determinethe currentin the5Ω resistorinthenetworkgiveninFig.3.10 
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Figure 3.10 

Solution:- Fromthe firstmesh, i.e.abcda, we have 

50=10(I1-I2)+5(I1-I3) 

Or15I1-10I2-5I3=50 (3.28) 

 

 

Fromthe second and third meshes.we can form a super mesh 

10(I2-I1)+2I2+I3+5(I3-I1)=0 

Or-15I1+12I2+6I3=0 (3.29) 



ThecurrentsourceisequaltothedifferencebetweenIIandIIImeshcurrents 

i.e.I2-I3=2A (3.30) 

Solving3.28.,3.29 and 3.30. we have 

I1=19.99A,I2=17.33A,andI3=15.33A 

Thecurrentinthe5Ωresistor=I1-I3 

=19.99-15.33=4.66A 

Thecurrentinthe5Ωresistoris4.66A. 

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine 

thecurrents, I1,I2and I3. 
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Figure 3.11 

 

 

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and 

thefirst mesh is ignored. Kirchhoff‘s voltage law is applied only for second and third meshes . 

Fromthesecondmesh,wehave 

3(I2-I1)+2(I2-I3)+10 =0 

Or -3I1+5I2-2I3=-10 (3.31) 

 

 

Fromthethirdmesh,wehave I3+ 

2 (I3-I2) =10 

Or -2I2+3I3=10 (3.32) 
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1 2 

R1 

From the first mesh, I1=10A (3.33) 

From the abovethree equations, we get 

I1=10A, I2=7.27, I3=8.18A 

 

 

3.5 NODALANALYSIS 

In the chapter I we discussed simple circuits containing only two nodes, including the 

reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum 

node, then it is possible to write N -1nodal equations by assuming N-1 node voltages. Forexample,a10 

node circuit requires nine unknown voltages and nine equations. Each node in a circuit can be 

assigned a number or a letter. The node voltage is the voltage of a given node with respect to 

oneparticularnode,calledthereference node,whichweassumeatzeropotential.Inthecircuitshown in fig. 

3.12, node 3 is assumed as theReference node. The voltage at node 1 is the voltage at thatnode with 

respect to node 3. Similarly, the voltage at node 2 is the voltage at that node with respect to node 3. 

Applying Kirchhoff’s current law at node 1, the current entering is the current leaving (See Fig.3.13) 
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Figure3.13 

I1= V1/R1+ (V1-V2)/R2 
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WhereV1andV2arethevoltagesatnode1and2,respectively.Similarly,atnode 

2.thecurrententeringisequaltothecurrentleavingasshowninfig. 3.14 

 

 

 

 

 

 

Figure 3.14 
 

 

 
 

 

(V2-V1)/R2+V2/R3+V2/(R4+R5)=0 

Rearrangingtheaboveequations,wehave 

V1[1/R1+1/R2]-V2(1/R2)= I1 

-V1(1/R2)+V2[1/R2+1/R3+1/(R4+R5)]=0 

Fromtheaboveequationswecanfindthevoltagesateachnode. 

Example3.7Determine thevoltages at each nodefor the circuitshown infig 3.15 
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Figure 3.15 

 

Solution:Atnode1,assumingthatallcurrentsareleaving,wehave (V1-

10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0 

Or V1[1/10+1/3+1/5 +1/3 ]-V2[1/3+1/3]=1 

0.96V1-0.66V2=1 (3.36) 

Atnode2,assumingthatallcurrentsareleavingexceptthecurrentfromcurrentsource,we have 

(V2-V1)/3+(V2-V1)/3+(V2-V3)/2=5 

-V1[2/3]+V2[1/3+1/3+1/2]-V3(1/2)=5 

-0.66V1+1.16V2-0.5V3=5 (3.37) 

R2 R4 

R3 R5 












0 






0 







0 

Atnode3assumingallcurrentsareleaving,wehave (V3-

V2)/2 + V3/1 + V3/6 =0 

-0.5V2+1.66V3=0 (3.38) 

ApplyingCramer’sruleweget 
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3.6 NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written 

byinspection without going through the detailed steps. Consider a three node resistive network, including the reference node, as shown in 

fig3.16 
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Figure 3.16 
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Infig.3.16thepointsaandbaretheactualnodesandcisthereferencenode. Now 

consider the nodes a and b separately as shown in fig 3.17(a) and (b) 
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Figure 3.17 
 

Infig3.17(a),accordingtoKirchhoff’scurrentlawwehave 

I1+I2+I3=0 

(Va-V1)/R1+Va/R2+(Va-Vb)/R3=0 

 

 

 

(3.39) 

 

Infig3.17(b),ifweapplyKirchhoff’scurrentlaw  

I4+I5=I3 

(Vb-Va)/R3+Vb/R4+(Vb-V2)/R5=0 

 

 

(3.40) 

Rearrangingtheaboveequationsweget 
 

(1/R1+1/R2+1/R3)Va-(1/R3)Vb=(1/R1)V1 (3.41) 

(-1/R3)Va+(1/R3+1/R4+1/R5)Vb=V2/R5 (3.42) 

In general, the above equation can be written as  

GaaVa+GabVb=I1 
 

(3.43) 

GbaVa+GbbVb=I2 
 (3.44) 

By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node 

a, Gaa=(1/R1+ 1/R2+ 1/R3) is the sum of the conductances connected to node a. Similarly, 

Gbb= (1/R3+ 1/R4+1/R5) is the sum of the conductances connected to node b. Gab=(-1/R3) is 

the sum of the mutual conductances connected to node a and node b. Here all the mutual 

conductances have negative signs. Similarly, Gba= (-1/R3) is also a mutual conductance 

connected between nodes b and a. I1and I2are the sum of the source currents at node a and 

node b, respectively. The current which drives into the node has positive sign, while the 

current that drives away from the node has negative sign. 
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Example3.8forthecircuitshowninthefigure3.18writethenodeequationsbythe inspection 

method. 
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Fig 3.18 

 

Solution:- 

 

Thegeneralequationsare 

 

GaaVa+GabVb=I1 (3.45) 

 

GbaVa+GbbVb=I2 (3.46) 

Consider equation3.45 

 

Gaa=(1+1/2+1/3)mho.Theselfconductanceatnodeaisthesumoftheconductances connected to 

node a. 

Gbb=(1/6+1/5+1/3)mhotheselfconductanceatnodebisthesumofconductances connected to node 

b. 

Gab=-(1/3)mho,themutualconductancesbetweennodesaandbisthesumofthe conductances 

connected between node a and b. 

SimilarlyGba=-(1/3),thesumofthemutualconductancesbetweennodesbanda. I1=10/1 =10 

A, the source current at node a, 

a b 

1 Ω 3Ω 2Ω 

5Ω 

10V 2Ω 

2V 5V 



1 2 3 

R2 VX 

R1 R3 R4 

VY 

I2=(2/5+5/6)=1.23A,thesourcecurrentatnodeb. Therefore, the 

nodal equations are 

1.83Va-0.33Vb=10 (3.47) 

 

-0.33Va+0.7Vb=1.23 (3.48) 

3.7 SUPERNODE ANALYSIS 

 

Suppose any of the branches in the network has a voltage source, thenitisslightlydifficult to 

apply nodal analysis. One way to overcome this difficulty is to apply the 

supernodetechnique.In this method, the two adjacent nodes that are connected by a voltage 

source are reduced to a single node and then the equations are formed by applying 

Kirchhoff’s current law as usual. This is explained with the help of fig. 3.19 
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FIG3.19 

 

 

 

 

 

Itisclearfromthefig.3.19,thatnode4isthereferencenode.ApplyingKirchhoff’scurrent law at 

node 1, we get 

I=(V1/R1)+(V1-V2)/R2 

 

Due to the presence of voltage source Vχin between nodes 2 and 3 , it is slightly 

difficult to find out the current. The supernode technique can be conveniently applied in this 

case. 

Accordingly,wecanwritethecombinedequationfornodes2and3asunder. 



V1 V2 +_---- V3 

20V 
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10A3Ω 

10V 

(V2-V1)/R2+V2/R3+(V3-Vy)/R4+V3/R5=0 

Theotherequationis 

V2-V3=Vx 

Fromthe above three equations, wecanfindthethreeunknownvoltages. 

 

 

 

 

Example3.9Determinethecurrentinthe5Ωresistorforthecircuitshowninfig. 
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Solution.Atnode1 

10=V1/3+(V1-V2)/2 

Or V1[1/3+1/2]-(V2/2)-10=0 

0.83V1-0.5V2-10=0 (3.49) 

 

 

Atnode2and3,thesupernodeequationis 

 

(V2-V1)/2+V2/1+(V3-10)/5+V3/2=0 

 

Or –V1/2+V2[(1/2)+1]+V3[1/5+1/2]=2 

 

Or -0.5V1+1.5V2+0.7V3-2=0 (2.50) 

 

Thevoltagebetweennodes2and3isgivenby 

 

V2-V3=20 (3.51) 
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This chapter introduces a number of theorems that have application throughout the field of 

electricity and electronics. Not only can they be used to solve networks such as encountered 

in the previous chapter, but they also provide an opportunity to determine the impact of a 

particular source or element on the response of the entire system. In most cases, the network 

to be analyzed and the mathematics required to find the solution are simplified. All of the 

theorems appear again in the analysis of ac networks. In fact, the application of each theorem 

to ac networks is very similar in content to that found in this chapter. 

The first theorem to be introduced is the superposition theorem, followed by Thévenin’s 

theorem, Norton’s theorem, and the maximum power transfer theorem. The chapterconcludes 

with a brief introduction to Millman’s theorem and the substitution and reciprocity theorems. 

SUPERPOSITIONTHEOREM 
The superposition theorem states that “The current through, or voltage across, any 

element of a network is equal to the algebraic sum of the currents or voltages produced 

independently by each source.” 

In other words, this theorem allows us to find a solution for a current or voltage using 

only one source at a time. Once we have the solution for each source, we can combine the 

results to obtain the total solution.The termalgebraic appears in the abovetheoremstatement 

because the currents resulting from the sources of the network can have different directions, 

just as the resulting voltages can have opposite polarities. 

If we are to consider the effects of each source, the other sources obviously must be 

removed. Setting a voltage source to zero volts is like placing a short circuit across its 

terminals. Therefore, when removing a voltage source from a network schematic, replace it 

with a direct connection (short circuit) of zero ohms. Any internal resistance associated with 

the source must remain in the network. 

Setting a current source to zero amperes is like replacing it with an open circuit. Therefore, 

when removing a current source from a network schematic, replace it by an open circuit of 

infinite ohms. Any internal resistance associated with the source must remain in the network. 

Theabovestatementsareillustratedin Fig. 

 



 

 

EXAMPLE9.1 

a.Usingthesuperpositiontheorem,determinethecurrent through 

resistor R2 for the network in Fig. 9.2. 

Solutions: 

In order to determine the effect of the 36 V voltage source,the 

current source must be replaced by an open-circuit equivalent 

as shown in Fig. 9.3. The result is a simple series circuit with 

a current equal to 

 

Examining the effect of the 9 A current source requires replacing 

the 36 V voltage source by a short-circuit equivalent as shown in 

Fig.9.4.TheresultisaparallelcombinationofresistorsR1and2. 

Applying the current divider rule results in 

 

Since the contribution to current I2 has the same direction for 

each source, as shown in Fig. 9.5, the total solution for current I2 

is the sum of the currents established by the two sources. That is, 
 

 

 

 

EXAMPLE9.2Usingthesuperpositiontheorem,determinethe 

current through the 12 Ω resistors in Fig. 9.8. Note that this is a two-source network of the 

type examined in the previous chapter when we applied branch-current analysis and mesh 

analysis. 

 

Solution: Considering the effects of the 54 V source requires replacing the 48 V source by a 

short-circuit equivalent as shown in Fig. 9.9. The result is that the 12 Ω and 4 Ω resistors are 

in parallel. The total resistance seen by the source is therefore, 

 



 



EXAMPLE9.3Usingthesuperpositiontheorem,determinecurrentI1forthenetworkin 
 

Solution:Sincetwosourcesarepresent,therearetwonetworks to be 

analyzed. First let us determine the effects of the voltage source 

by setting the current source to zero amperes as shown in Fig. 

9.13. Note that the resulting current is defined as I1’ because it 

is the current through resistor R1 due to the voltage source 

only. 

Due to the open circuit, resistor R1 is in series (and, in fact, in 

parallel) with the voltage source E. The voltage across the 

resistor is the applied voltage, and current I1’ is determined by 

 

Now for the contribution due to the current source. 

Setting the voltage source to zero volts results in the 

network in Fig. 9.14, this presents us with an 

interesting situation. The current source has been 

replaced with a short-circuit equivalent that is 

directly across the current source and resistor R1. 

Since the source current takes the path of least 

resistance, it 

chooses the zero ohm path of the inserted short- 

circuitequivalent,andthecurrentthroughR1iszero 

amperes. This is clearly demonstrated by an 

application of the current divider rule as follows: 



 



 
 

 

 

9.3 THÉVENIN’STHEOREM 

The next theorem to be introduced, Thévenin’s theorem, is probably one of the most 

interesting in that it permits the reduction of complex networks to a simpler form for analysis 

and design. 

In general, the theoremcan be used to do the following: 

• Analyzenetworks withsources that arenot inseries or parallel. 

• Reduce the number of components required to establish the same characteristics at the 

output terminals. 

• Investigate the effect of changing a particular component 

on the behaviour of a network without having to analyze the 

entire network after each change. 

Allthreeareasofapplicationaredemonstratedintheexamples to 

follow. 

Thévenin’stheoremstatesthefollowing: 

 

Anytwo-terminaldcnetworkcanbereplacedbyan equivalent 

circuit 

consisting solely of a voltage source and a series resistor as 

shown in 

Fig.9.23. 

ThetheoremwasdevelopedbyCommandantLeon-Charles 

Thévenin in 1883 as described in Fig. 9.24. 

To demonstrate the power of the theorem, consider the 

fairly complex network of Fig. 9.25(a) with its two sources and 

series-parallel connections. 

The theorem states that the entire network inside the blue shaded 

area can be replaced by one voltage source and one resistor as 

shown in Fig. 9.25(b). If the replacement is done properly, the 

voltage across, and the current through, the resistor RL will be the 

sameforeachnetwork.ThevalueofRLcanbechangedtoany 



value, and the voltage, current, or power to the load resistor is the same for each 

configuration. 

Now,thisisaverypowerfulstatement—onethatisverifiedintheexamples tofollow. 
The question then is, How can you determine the proper value of Thévenin voltage and 

resistance?Ingeneral,findingtheThévenin resistancevalueisquitestraightforward.Finding the 

Thévenin voltage can be more of a challenge and, in fact, may require using the superposition 

theorem. 

Fortunately, there is a series of steps that will lead to the proper value of each parameter. 

Although a few of the steps may seem trivial at first, they can become quite important when 

the network becomes complex. 

 

Thévenin’s Theorem Procedure 

Preliminary: 

1. Remove that portion of the network where the Thévenin equivalent circuit is found. In 

Fig. 9.25(a), this requires that the load resistor RL be temporarily removed from the 

network. 

2. Mark the terminals of the remaining two-terminal network. (The importance of this step 

will become obvious as we progress through some complex networks.) RTh: 

3. Calculate RTh by first setting all sources to zero (voltage sources are replaced by short 

circuits and current sources by open circuits) and then finding the resultant resistance 

between the two marked terminals. (If the internal resistance of the voltage and/or current 

sources is included in the original network, it must remain when the sources are set to 

zero.) ETh: 

4. Calculate ETh by first returning all sources to their original position and finding the 

open-circuit voltage between the marked terminals. (This step is invariably the one that 

causes most confusion and errors. In all cases, keep in mind that it is the open-circuit 

potential between the two terminals marked in step 2.)Conclusion: 

5. Draw the Thévenin equivalent circuit with the portion of the circuit previously removed 

replaced between the terminals of the equivalent circuit. This step is indicated by the 

placement of the resistor RL between the terminals of the Thévenin equivalent circuit as 

shown in Fig. 9.25(b). 

 

 



 

 

level of the resulting voltage to establish the measured resistancelevel. 

In Fig. 9.28(b), the trickle current of the ohmmeter approaches 

thenetworkthroughterminala,andwhenitreachesthejunctionofR1 and 

R2, it splits as shown. The fact that the trickle current splits and then 

recombines at the lower node reveals that the resistors are in parallel 

as far as the ohmmeter reading is concerned. In essence, the path of 

the sensing current of the ohmmeter has revealed how the resistors are 

connected to the two terminals of interest and how the Thévenin 

resistance should be determined. Remember this as you work through 

the various examples in this section. 

Step 4: Replace the voltage source (Fig. 9.29). For this case, the 

opencircuitvoltage ETh is the same as the voltage drop across the 6 Ω 

resistor. 

Applyingthevoltagedividerrulegives 



EXAMPLE 9.7 Find the Thévenin equivalent circuit for the network in the shaded area 

ofthe network in Fig. 9.32. 

Solution: 

Steps1and2:SeeFig.9.33. 

Step 3: See Fig. 9.34. The current source has been replaced with an open-circuit equivalent 

and the resistance determined between terminals a and b. 

In this case, an ohmmeter connected between terminals a and b sends out a sensing current 

that flows directly through R1 and R2 (at the same level). The result is that R1 and R2 are in 

series and the Thévenin resistance is the sum of the two, 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 4: See Fig. 9.35. In this case, since an open circuit exists between the two marked 

terminals, the current is zero between these terminals and through the 2Ω resistor. Thevoltage 

drop across R2 is, therefore, 

V2=I2R2=(0)R2=0V 
and ETh= V1= I1R1 =IR1=(12A)(4_)=48V 

Step 5: SeeFig.9.36. 

EXAMPLE 9.8 Find the Thévenin 

equivalent circuit for the network in 

theshadedareaofthenetworkinFig. 

9.37.Noteinthisexamplethatthereis no 

need for the section of the network to 

be preserved to be at the “end” of the 

configuration. 



 

Step 3: See Fig. 9.39. Steps 1 and 2 are relatively easy to apply, but now we must be careful 

to“hold”ontotheterminalsaandbastheThéveninresistanceandvoltagearedetermined.In Fig. 

9.39, all the remaining elements turn out to be in parallel, and the network can be redrawn as 

shown. We have 
 

 

Step 4: See Fig. 9.40. In this case, the network can be redrawn as shown in Fig. 9.41. Since 

the voltage is the same across parallel elements, the voltage across the series resistors R1 and 

R2 is E1, or 8 V. Applying the voltage divider rule gives 

 

Solution: 

Steps1and2:SeeFig.9.38 



 

Step 5: SeeFig.9.42. 

 

 

EXAMPLE 9.9 Find the 

Théveninequivalentcircuitforthe 

network in the shaded area of the 

bridge network in Fig. 9.43. 
 

 

 

 

 

 

 

Solution: 

Steps1and2:SeeFig.9.44. 
Step 3: See Fig. 9.45. In this case, the short-circuit replacement of the voltage source E 

provides a direct connection between c and c_ in Fig. 9.45(a), permitting a “folding” of the 

network around the horizontal line of a-b to produce the configuration in Fig. 9.45(b). 
 



 
 

 

 

 

 

 

 

 

 

 

EXAMPLE9.11ForthenetworkofFig.9.54, 

a. FindtheThéveninequivalentcircuitforthe 

portion of the network in the shaded area. 

b. ReconstructthenetworkofFig.9.54withthe 

Thévenin equivalent network in place. 

c. Usingtheresultingnetworkofpart(b)find the 

voltage Va. 

Solutions: 

a. Steps1and2:SeeFig.9.55. 
Step 3: SeeFig.9.56. 

 

 

 

Step 4: Applying the superposition theorem, we will first find the 

effectofthevoltagesourceontheThéveninvoltageusingthenetwork of 

Fig. 9.57. Applying the voltage divider rule: 
 



 

 

 

 



 

9.4 NORTON’STHEOREM 
Anytwo-terminallinearbilateraldcnetworkcanbe replaced by 

an 

equivalentcircuitconsistingofacurrentsourceanda parallel 

resistor, as shown in Fig. 9.65. 
 

The discussion of Thévenin’s theorem with respect to the equivalent circuit can also be 

applied to the Norton equivalent circuit. The steps leading to the proper values of IN and RN 

are now listed. 

Norton’sTheoremProcedure 
Preliminary: 

1. RemovethatportionofthenetworkacrosswhichtheNortonequivalentcircuitisfound. 

2. Marktheterminalsoftheremainingtwo-terminalnetwork. 

RN: 

3. Calculate RN by first setting all sources to zero (voltage sources are replaced with short 

circuits and current sources with open circuits) and then finding the resultant resistance 

between the two marked terminals. (If the internal resistance of the voltage and/or current 

sources is included in the original network, it must remain when the sources are set to 

zero.) Since RN _ RTh, the procedure and value obtained using the approach described for 

Thévenin’s theorem will determine the proper value of RN. 

IN: 

4. Calculate IN by first returning all sources to their original position and then finding the 

short-circuit current between the marked terminals. It is the same current that would be 

measured by an ammeter placed between the marked terminals. 

Conclusion: 

5. DrawtheNortonequivalentcircuitwiththeportionofthecircuitpreviouslyremoved replaced 

between the terminals of the equivalent circuit. 

The Norton and Thévenin equivalent circuits can also be found from each other by using the 

source transformation discussed earlier in this chapter and reproduced in Fig. 9.66. 

 



 

 

EXAMPLE9.12FindtheNortonequivalentcircuitfor the 

network in the shaded area in Fig. 9.67. 

Solution: 

Steps1and2:SeeFig.9.68. 

Step 3: SeeFig.9.69,and 

 
Step 4: See Fig. 9.70, which clearly indicates that the 

short-circuit connection between terminals a and b is in 

parallelwithR2andeliminatesitseffect.INistherefore the 

same as through R1, and the full battery voltage appears 

across R1 since 

 

Step5:SeeFig.9.71.Thiscircuitisthesameasthefirst one 

considered in the development of Thévenin’s theorem. 

A simple conversion indicates that the Thévenin circuits 

are, in fact, the same (Fig. 9.72). 

 
 

EXAMPLE9.13FindtheNortonequivalentcircuitforthenetwork 

external to the 9 _ resistor in Fig. 9.73. 

Solution: 

Steps1and2:SeeFig.9.74. 



 

 

EXAMPLE9.14(Twosources)FindtheNortonequivalentcircuitfortheportionofthe network to 

the left of a-b in Fig. 9.78. 



 

 

9.5 MAXIMUMPOWERTRANSFER 

THEOREM 

Whendesigningacircuit,itisoftenimportanttobeabletoansweroneofthefollowing questions: 

Whatloadshouldbeappliedtoasystemtoensurethattheloadisreceivingmaximum power from 

the system? 

Conversely: 

Foraparticularload,whatconditionsshouldbeimposedonthesourcetoensurethatit will deliver 

the maximum power available? 

Even if a load cannot be set at the value that would result in maximum power transfer, it is 

oftenhelpfultohavesomeideaofthevaluethatwilldrawmaximumpowersothatyoucan compare it 

to the load at hand. For instance, if a design calls for a load of 100 Ω, to ensure that the load 

receives maximum power, using a resistor of 1 Ω or 1 k Ω results in a power transfer that is 

much less than the maximum possible. 

However, using a load of 82 Ω or 120 Ω probably results in a fairly good level of power 

transfer.Fortunately,theprocessoffindingtheloadthatwillreceivemaximumpowerfroma 

particular system is quite straightforward due to the maximum power transfer theorem, 

which states the following: 

Aloadwillreceivemaximumpowerfromanetworkwhenitsresistanceisexactlyequalto the 

Thévenin resistance of the network applied to the load. That is, 
 



 

The total power delivered by a supply such as ETh is absorbed by both the Thévenin 

equivalentresistanceandtheloadresistance.Anypowerdeliveredbythesourcethatdoes not get 

to the load is lost to the Thévenin resistance. 

Under maximum power conditions, only half the power delivered by the source gets to the 

load. Now, that sounds disastrous, but remember that we are starting out with a fixed 

Thévenin voltage and resistance, and the above simply tells us that we must make the two 

resistancelevelsequalifwewantmaximumpowertotheload.Onanefficiencybasis,weare working 

at only a 50% level, but we are content because we are getting maximum power out of our 

system. 

Thedcoperatingefficiencyisdefinedastheratioofthepowerdeliveredtotheload(PL)to the power 

delivered by the source (Ps). That is, 
 

 

Ifefficiencyistheoverridingfactor,thentheloadshouldbemuchlargerthantheinternal 

resistance of the supply. If maximum power transfer is desired and efficiency less of a 

concern, then the conditions dictated by the maximum power transfer theorem should 

be applied. 

A relatively low efficiency of 50% can be tolerated in situations where power levels are 

relatively low, such as in a wide variety of electronic systems, where maximum power 

transfer for the given system is usually more important. However, when large power levels 

are involved, such as at generating plants, efficiencies of 50% cannot be tolerated. In fact, a 

great deal of expense and research is dedicated to raising power generating and transmission 

efficiencies a few percentage points. Raising an efficiency level of a 10 MkW power plant 

from 94% to 95% (a 1% increase) can save 0.1 MkW, or 100 million watts, of power—an 

enormous saving. In all of the above discussions, the effect of changing the load was 

discussedforafixedThéveninresistance.Lookingatthesituationfromadifferentviewpoint, we can 

say 

if the load resistance is fixed and does not match the applied Thévenin equivalent 

resistance,thensomeeffortshouldbemade(ifpossible)toredesignthesystemsothatthe Thévenin 

equivalent resistance is closer to the fixed applied load. 

In other words, if a designer faces a situation where the load resistance is fixed, he or she 

shouldinvestigatewhetherthesupplysectionshouldbereplacedorredesignedtocreatea closer 

match of resistance levels to produce higher levels of power to the load. 



FortheNortonequivalentcircuitinFig.9.90,maximumpowerwillbedeliveredtotheload when , 

RL=RN ............................................... (9.5) 
This result [Eq. (9.5)] will be used to its 

fullestadvantageintheanalysisoftransistor 

networks,wherethemostfrequentlyapplied 

transistorcircuitmodelusesacurrentsource 

rather than a voltage source. 

FortheNortoncircuitinFig.9.90, 
 

 

Todemonstratethatmaximumpoweris indeed 

transferred to the load 

undertheconditionsdefinedabove,consider the 

Thévenin equivalent circuit in Fig. 9.85. 

Beforegettingintodetail,however,ifyouwere to 

guess what value of RL would result inmaximum 

power transfer to RL, you might think 

thatthesmallerthevalueofRL,thebetteritis because 

the current reaches a maximum when itis squared 

in the power equation. The problem 

is,however,thatintheequationPL= I 2 
LRL, the load resistance is a multiplier. As it gets 

smaller, it forms a smaller product. Then again, 

you might suggest larger values of RL becausethe 

output voltage increases, and power is 

determinedbyPL=V2L/RL.Thistime, 

however, the load resistance is in the denominator of the equation and causes the resulting 

power to decrease. A balance must obviously be made between the load resistance and the 

resulting current or voltage. The following discussion shows that 

maximum power transfer occurs when the load voltage and current are one-half their 

maximum possible values. 

Forthe circuitin Fig.9.85, thecurrentthroughtheloadisdeterminedby 

 



power has a maximum value of 100 W, the current is 3.33 A, or one-half its maximum value 

of 6.67 A (as would result with a short circuit across the output terminals), and the voltage 

across the load is 30 V, or one-half 

its maximum value of 60 V (as would result with an open circuit across its output terminals). 

As you can see, there is no question that maximum power is transferred to the load when the 

load equals the Thévenin value. 

The power to the load versus the range of resistor values is provided in Fig. 9.86. Note in 

particular that for values of load resistance less than the Thévenin value, the change is 

dramatic as it approaches the peak value. However, for values greater than the Thévenin 

value, the drop is a great deal more gradual. This is important because it tells us thefollowing: 

If the load applied is less than the Thévenin resistance, the power to the load will drop off 

rapidly as it gets smaller. However, if the applied load is greater than the Thévenin 

resistance, the power to the load will not drop off as rapidly as it increases. 

 

 

 



 
 

 



 
 

 

 



 



CHAPTER-05 

ACCIRCUITANDRESONANCE 

 

DirectCurrent AlternatingCurrent 

 

 

 

 

(1) D.C. always flow in onedirection 

and whose magnitude remains 

constant. 

(1) A.C. is one which

 reverseperiodically in 

direction and whose magnitude 

undergoes a definite cycle changes 

in definite intervals of time. 

(2) 
Highcostofproduction. 

(2) Lowcostofproduction 

(3) 

 

 

(4) 

It is not possible by D.C.Because 

D.C.is dangerous to the 

transformer. 

Itstransmissioncostistoohigh. 

(3) 

 

 

(4) 

Byusingtransformer A.C.voltage 

can be decreased or increased. 

A.C.canbetransmittedtoalong 

distance economically. 

 

 

DefinitionofA.C.terms:- 

Cycle:Itisonecompletesetof+veand–vevaluesofalternatingquality spread over 

360or 2radan. 

TimePeriod:Itisdefinedasthetimerequiredtocompleteonecycle. 

Frequency:Itisdefinedasthereciprocaloftimeperiod.i.e.f=1/T 

Or 

Itisdefinedasthenumberofcyclescompletedpersecond. 

Amplitude : It is defined as the maximum value ofeither +ve halfcycle or –ve 

half cycle. 

Phase:Itisdefinedastheangulardisplacementbetweentwohavesiszero. 



OR 

Two alternating quantity are inphase 

when each pass through their zero value at 

the same instant and also attain their 

maximum value at the same instant in a 

given cycle. 

 

V=Vmsinwt i 

=Imsin wt 

 

PhaseDifference:-Itisdefinedastheangulardisplacementbetweentwoalternating 

quantities. 

OR 

If the angular displacement between two waves are not zero, then that is 

known as phase difference. i.e. at a particular time they attain unequal distance. 
 

OR 

Two quantities are out of phase if they reach their maximum value or 

minimumvalueatdifferenttimesbutalwayshaveanequalphaseanglebetween them. 

HereV=Vmsinwt 

i=Imsin(wt-) 

Inthiscasecurrentlagsvoltagebyanangle‘’. 

PhasorDiagram: 

GenerationofAlternatingemf:- 

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt2is 

placed in 

x-axis in an uniform magnetic field of maximum flux density Bm web/nt2. The 

coil is rotating in the magnetic field with a velocity of w radian / second. Attime 

t = 0, the coil is in x-axis. After interval of time ‘dt’ second the coil make 

rotating in anti-clockwise direction and makes an angle ‘’ with x-direction.The 

perpendicular component of the magnetic field is = n cos wt 

AccordingtoFaraday’sLawsofelectro-magneticInduction 



0 

eN
d

dt 

N
d

(




coswt) 

 

dt m 

 

 

 

 

 

Where 

N(mwcoswt) 

Nwmsinwt 

2fNmsinwt(Qw2f) 

2fNBmAsinwt e 

Emsin wt 

Em2fNBmA 

ffrequencyinHz 

BmMaximumfluxdensityinWb/mt2 

Nowwhenorwt=90e = 

Em 

i.e. Em=2fNBmA 

 

RootMeanSquare(R.M.S)Value:

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which 

when flowing through a given circuit for a given time produces same heat as 

produced by the alternating current when flowing through the same circuit for 

the same time. 

Sinuscdialalternatingcurrentis i 

= Imsin wt = Imsin 

The mean of squares of the instantaneous values of current over one 

complete cycle 
2

i2.d

(20) 

Thesquarerootofthisvalueis 





2
i2.d


 
2



2
(I 


 

  

2

sin)2 
d



 

22

4 1cos2
 

2 

2 

0 


I 

I 






 d



sin22


2 0 
 

 
















Im 

 

I
r.m.s

 m 0.707Im 

 

 

AverageValue:

The average value of an alternating current is expressed by that steady 

current (d.c.) which transfers across any circuit the same charge as it transferred 

by that alternating current during the sae time. 

Theequationofthealternatingcurrentisi=Imsin
i.d

Iav(0) 



I m.sin

d
π 

m
sinθ.dθ 

0 
π

0 


I

mcos
I

mcos(cos00
 

π 0 π 


I

m10(1)
π 

 

Iav 

 

Iav 


2Im 




2MaximumCurrent 

π 

Hence,Iav0.637Im 

Theaveragevalueoveracompletecycleiszero 

  

2

I
22


 

sin.d 


m 


I2


4

 

22

4 20
 

m 

2 

I
2 

  

2

I221cos2

0


2 
d

  

4

I
22


0
2 

sin4

2 
d



1 

2 

1 

2 

Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of 

maximum value to r.m.s value. 

Ka
MaximumValue


Im 

R.M.S.Value Im 

 1.414 

 

Formfactor:-Itisdefinedastheratioofr.m.svaluetoaveragevalue. 

Kf
r.m.s.Value 

Average.Value 


0.707Im 

0.637Im 

 1.414 

Kf=1.11 

PhasororVectorRepresentationofAlternatingQuantity:



An alternating current or voltage, (quantity) in a vector quantity whichhas 

magnitude as well as direction. Let the alternating value of current be 

represented by theequation e = EmSin wt. The projection of Emon Y-axis at any 

instant gives the instantaneous value of alternating current. Since the 

instantaneous values are continuously changing, so they are represented by a 

rotating vector or phasor. A phasor is a vector rotating at a constant angular 

velocity 

Att1,e1Emsinwt1 

Att2,e2Emsinwt2 

AdditionoftwoalternatingCurrent:

Lete1Emsinwt 

e2Emsin(wt) 

The sum of two sine waves of the samefrequency 

is another sine wave of samefrequency but of a 

different maximum value and Phase. 

e

PhasorAlgebra:

Avectorquantitycanbeexpressedintermsof 

(i) RectangularorCartesianform 

(ii) Trigonometricform 

(iii) Exponentialform 

2 

2 

 

2 2 

1 2 12 



a2b2 

 

(iv) Polarform 

 

 
Eajb 

E(cosjsin) 

Where a = E cos is the active part 

b=Esinisthereactivepart 

tan1bPhaseangle 
a 

 

j 1(90o) 

j21(180o) 

j3j(270o) 

j41(360o) 

(i) Rectangularfor:-  

Eajb 

tanb/a 

(ii) Trigonometricform:- 

EE(cosjsin) 

(iii) Exponentialform:- 

EEej

(iv) Polarform:- 

EE/e (E ) 

AdditionorSubtration:- 

E1a1jb1E2

a2jb2 

E1 E2(a1a2)(b1b2 

1b1 b2


tan aa 
1 2

Multiplication:- 

E1E2(a1ja1)(a1jb2) 

(a1a2b1b2)j(a1a2b1b2) 



2 

2 2 

2 2 2 2 

1a1b2b1a2


tan aabb 
12 12

E1E11 

E2E22 

E1E2E1E212 

Division:- 

E1E11E2

E22 
E1

E11
E1

E2 E22 E2 

 

A.C.throughPureResistance:

LettheresistanceofRohmisconnectedacrosstoA.Csupplyofapplied voltage 

 

 

 

 

 

 

 

eEmsinwt ----------------------------- (1) 

Let‘I’istheinstantaneouscurrent. 

Here e = iR 

i=e/R 
i=Emsinwt/R --------------------------- (2) 

Bycomparingequation(1)andequation(2)wegetalternatingvoltage and 

current in a pure resistive circuit are in phase 

Instantaneouspowerisgivenby P 

= ei 

=Emsinwt.Imsinwt 

=EmImsin2wt 


EmIm.2sin2wt 

2 


Em.

Im.(1cos2wt) 
2 

P
Em.

Im 

2 
 

Em. 
Im.cos2wt 2 

i.e. P
Vm.

Im  
Vm.

Im.cos2wt 

1 2 



2 2 

2 2 

L 

w 

Where
Vm.

Imiscalledconstantpartofpower. 
2 2 

Vm.
Im.cos2wtis calledfluctuating partofpower. 

 

Thefluctuatingpart 

waves. 

VmIm.cos2wt 
2 

offrequencydoublethatofvoltageandcurrent 

Hencepowerforthewholecycleis P
Vm.

Im Vrms .Irms 

 

 

 

A.CthroughPureInductance:

Letinductanceof‘L’henryisconnectedacrosstheA.C.supply 

 

vVmsinwt ---------------------------- (1) 

AccordingtoFaraday’slawsofelectromagneticinductancetheemfinduced across the 

inductance 

VL
di 

dt 
di

istherateofchangeofcurrent 
dt 

VsinwtL
di 

m dt 

di


Vmsinwt 

dt L 

di
Vmsinwt.dt L 

Integratingbothsides, 

di
Vmsinwt.dt 

i
Vm


coswt
 
 

PVIwatts 

L 



2 

2 

2 X 

i 
Vmcoswt 

wL 

i
VmcoswtwL 

i
Vmsin


wt



 
wL  


Vmsin


wt

 
[QX2fLwL] 

  L 
XL  

Maximumvalueofiis 
I

Vmwhen 
 




isunity. 
m sinwt 

L  

Hencetheequationofcurrentbecomesi Imsin(wt/2) 

So we find that if applied voltage is rep[resented 

byflowing in a purely inductive circuit is given by 

iImsin(wt/2) 

Herecurrentlagsvoltagebyanangle/2Radian. 

vVmsinwt,thencurrent 

 

Powerfactor =cos

=cos90

=0 

PowerConsumed=VIcos

=VI0 

=0 

Hence,thepowerconsumedbyapurelyInductivecircuitiszero. 

A.C.ThroughPureCapacitance:




Letacapacitanceof‘C”faradisconnectedacrosstheA.C.supplyofapplied voltage 

vVmsinwt ------------------------------------- (1) 

Let ‘q’=changeonplateswhenp.d.betweentwoplatesofcapacitoris‘v’ 

q=cv 

q=cVmsinwt 



 

R 

R 

dq
c

d
(Vsinwt) 

  

dt dt m 

i=cVmsinwt 

=wcVmcoswt 


Vm 

1/wc 
coswt 


Vm 

Xc 
coswt [QXc 


1


wc 

1 
 

 

2fc 
isknown as capacitivereactance 

inohm.] 
Imcoswt 

Imsin(wt /2) 

Herecurrentleadsthesupplyvoltagebyanangle/2radian. 

Powerfactor =cos

= cos 90 =0 

Power Consumed= VI cos 

=VI0 =0 

Thepowerconsumedbyapurecapacitivecircuitiszero. 

A.C.ThroughR-LSeriesCircuit:



TheresistanceofR-ohmandinductanceofL-henryareconnectedinseries across the A.C. 

supply of applied voltage 

eEmsinwt ------------------------------------- (1) 

VVRjVL 

V2V2tan1XL

R L  
R

 (IR)2(IX)2tan1XL

L 
R


I R2X2tan1XL

L  
 

VIZtan1XL

 
 



2 2 

WhereZ

RjXLisknownasimpedanceofR-LseriesCircuit. 

I   
V 

Z


Emsinwt 

Z

IImsin(wt) 

Herecurrentlagsthesupplyvoltagebyanangle. 

PowerFactor:Itisthecosineoftheanglebetweenthevoltageandcurrent. 

OR 

Itistheratioofactivepowertoapparentpower. 

OR 

Itistheratioofresistancetoinpedence. 

Power:

v.i 

Vmsinwt.Imsin(wt) 

VmImsinwt.sin(wt) 


1
VI 
2

mm 2sinwt.sin(wt) 


1
VI 
2

mm [coscos2(wt)] 

Obviouslythepowerconsistsoftwoparts. 

(i) aconstantpart
1
VIcoswhichcontributestorealpower. 

 

2
mm 

(ii) apulsatingcomponent
1
VIcos(2wt)whichhasafrequencytwice 

 

2
mm 

thatofthevoltageandcurrent.Itdoesnotcontributetoactualpowersinceits average value 

over a complete cycle is zero. 

Henceaveragepowerconsumed 


1
VIcos



2
mm 


Vm.

Im 

VIcos

cos

WhereV&Irepresentsther.m.svalue. 

A.C.ThroughR-CSeriesCircuit:

Theresistanceof‘R’-ohmandcapacitanceof‘C’faradisconnectedacrossthe 

A.C.supplyofappliedvoltage 

R2X2 
L 



R 

eEmsinwt 
 

VVR(jVC) 

IR(jIXC) 

I(RjXC) 

VIZ 

- ---------------------------- (1) 

 

Where ZRjXC

ZRjXC 



isknownasimpedanceofR-CseriesCircuit. 

tan1XC

 
 

VIZ

I
V 

 
 

Z


Emsinwt 

Z


Emsin(wt) 
Z

IImsin(wt) 

Herecurrentleadsthesupplyvoltagebyanangle‘’. 

A.C.ThroughR-L-CSeriesCircuit:

Letaresistanceof‘R’-ohminductanceof‘L’henryandacapacitanceof‘C’ farad are 

connectedacross the A.C. supply in series of applied voltage 
 

eEmsinwt ------------------------------------- (1) 

R2X2 C 

R2X2 
C 



R 

  

eVRVLVC 

VRjVLjVC 

VRj(VLVC) 

IRj(IXLIXC) 

I[Rj(XLXC)] 

I 

 

 

 

 

 

 

 
tan1XLXC

 
 

IZ

Where 

Circuit. 

ZI isknownastheimpedanceofR-L-CSeries 

IfXLXC,thentheangleis+ve. 

IfXLXC, then the angle is -ve. 

Impedanceisdefinedasthephasorsumofresistanceandnetreactance 

eIZ

I
e 

Z
IZ 

Emsinwt 

Z
Im sin(wt) 

(1) If 

(2) If 

(3) If 

XLXC,thenP.fwillbelagging. 

XLXC,then,P.fwillbeleading. 

XLXC,then,thecircuitwillberesistiveone.Thep.f.becomesunity 

andtheresonanceoccurs. 

REASONANCE 

It is defined as the resonance in electrical circuit having passive or active 

elements represents a particular state when the current and the voltage in the 

circuitismaximumandminimumwithrespecttothemagnitudeofexcitationat a 

particular frequency and the impedances being either minimum or maximum at 

unity power factor 

Resonanceareclassifiedintotwotypes. 

(1) SeriesResonance 

(2) ParallelResonance 

(1) Series Resonance :- Letaresistanceof‘R’ohm,inductanceof‘L’ henry 

and capacitance of ‘C’ farad are connected in series across A.C. supply 

R2(XX L C 
)2 

R2(XX 
L C 

)2 



o 

o 

1 

 

eEmsinwt 

Theimpedanceofthecircuit 

ZRj(XLXC)] 

Z

Theconditionofseriesresonance: 

Theresonancewilloccurwhenthereactivepartofthelinecurrentiszero The p.f. 

becomes unity. 

The net reactance will be zero. 

The current becomes maximum. 

Atresonancenetreactanceiszero 

XLXC0 

XLXC 

WoL
1 

 
 

WoC 

W2LC1 

W2
1 

LC 

Wo



2fo 

 

 



1 

 

1 

LC 

fo

Resonantfrequency(fo) . 
2

ImpedanceatResonance 

Z0= R 

CurrentatResonance 

I
V 

o 
R 

Powerfactoratresonance 

p.f.
R 

Zo 


R
1 
R 

QZo R

R2(XX L C 
)2 

LC 

1 

2 LC 

LC 

1 



0 

ResonanceCurve:- 
 

At low frequency the Xcis greater and the circuit behaves leading and 

at high frequency the XLbecomes high and the circuit behaveslagging 

circuit. 
Iftheresistancewillbelowthecurvewillbestiff(peak). 

 If the resistance will go oh increasing the current goes on decreasing and 

the curve become flat. 

BandWidth:

At point ‘A’ the power loss is I 2R. 

Thefrequencyisf0whichisatresonance. 
I2R 

Atpoint‘B’thepowerlossis 0 . 
2 

Thepowerlossis50%ofthepowerlossatpoint ‘A”/ 

 

 

 

Hencethefrequencies 

corresponding to point ‘B’ is known as half power frequencies f1& f2. 

f1=Lowerhalfpowerfrequency 

f1 f0
R 

 
 

4L 

F2=Upperhalfpowerfrequency 

f2 f0
R 

 
 

4L 

Bandwidth(B.W.)isdefinedasthedifferencebetweenupperhalfpower 
frequencyadlowerhalfpowerfrequency. 

B.W.= f2f1
R 

 
 

2L 



 

Qualityfactor=
2f0L. 

R 

Selectivity:

SelectivityisdefinedastheratioofBandwidthtoresonantfrequency 

Selectivity= 
B.W. 

 
 

f0 


R 

2L 
Selectivity

R 
 

 

2foL 

QualityFactor(Q-factor):

Itisdefinedastheratioof2Maximumenergystoredtoenergydissipated per cycle 

2
1
LI2 

Q-factor = 

 




2 
0 

 
 

I2RT 

 

I2RT 


L.2I2 

I2RT 


L.2I2 

I2RT 


2L. 

RT 

 
 

 

 

 

 

 

 

 
 1. 
Q  
 I 

 

 

 

 

 

 

 

f

0




Qualityfactorisdefinedasthereciprocalofpowerfactor. 

 

Itisthereciprocalofselectivity. 

Q-factorOrMagnificationfactor 

 


Voltage 

Voltage 


I0XL 

I0R 


XL 

R 

 

across 

across 

 

Inductor. 

resistor 


2f0L

W0L 

R R 
 

 

Q-factorfactor 
Voltage across Capacotor. 

Voltage across resistor 


I0Xc  

I0R 

Qfactor=
1. 

cos



Q-factor=
W0L 

R 




XC 

R 

 
1 

2f0C 
 

1 

2f0CR 

 

Q2
W0L

R 

1 
 

 

W0CR 

Q2
1 

 
 

R2C 
 

 

GraphicalMethod:

(1) ResistanceisindependentoffrequencyItrepresentsastraightline. 

(2) InductiveReactance XL=2fL 

Itisdirectlyproportionaltofrequency.Asthefrequencyincreases,XLincreases 

(3) CapacitiveReactanceXC=  
1 

2fC 
 

 

It isinversely proportional to frequency. As the frequency increases, 

XCdecreases. 

When frequency increases, XLincreases and XCdecreases from the 

highervalue. 

Q-factor
 

W0CR 

Q
1 L 

R C 

Q
1 

R2C 



R2X2 
L 

L L C 

L 

 

Atacertainfrequency.XL=XC 

ThatparticularfrequencyisknownasResonantfrequency. 

Variationofcircuitparameterinseriesresonance: 

(2) Parallel Resonance :- Resonance willoccur when the reactive part of 

theline current is zero. 

 

 

 

At resonance, 

IC–ILsin=0 

ICILsin


V


XC 


V


XC 


1


V 

 

V 

R2X2 

XL 
 

sin



 
XL 

XC R2X 

R2X2X.X 

Z2X 
 

L.XC W0L
1 

 
 

W0C 

R2X2 
L 

2 

L 



R2X2 
L 

R2X2 
L 

C  

Z2
L 

C 

R2X 
2


L 
L 

C 

R2(2f L)2
L 

C 

R242f 
2L2

L 

C 

42f 
2L2

L
R2 

C 
f2 

1 

L
R2



0 42f 

 

f0

2
L2   

f0=Resonantfrequencyinparallelcircuit. 

CurrentatResonance=ILcos

 
V 

 

  
VR 

R2X 

. 
R 

 

 
2 

L 


VR 

Z2 


VR 

L/C 



 
V 

L/RC 
V 

Dynamic Impedence 

L/RCDynamicImpedanceofthecircuit. 

or, dynamic impedances is defined as the impedance at resonance frequency in 

parallel circuit. 

ParallelCircuit:



Theparallelresonancecondition: 

1 

2

1 

LC 

2 


R 

L2 

0 

0 

0 

0 



1 

1 1 

2 

2 2 



1 1 
2 

2 

1 2 

1 2 

2 1 





1 

1 

L 

L L 

C 

C C 

L L C 

L C 

L C 

C C L 



Whenthereactivepartofthelinecurrentiszero. The net 

reactance is zero. 

Thelinecurrentwillbeminimum. The 

power factor will be unity 

Impedance Z1R1jXL 

Z2R2jXC 

Admittance Y1
1 


RjX 

 
(R1jXL) 

(R1jXL)(R1jXL) 


R1jXL 

 

R2X2 

Y1
R1 

R2X2 
j 

XL 

R2X2 

Admittance Y2
2 

 
1 

R1jXC 

 
(R2jXC) 

 

(R21jXC)(R2jXC) 


R2jXL 

 

R2X2 

Y2
R2 

R2X2 
 j 

X
C

R2X2 

TotalAdmittanceAdmittance 1

Z


1


1 
Z Z 

  1 2 

YY1Y2 

Y
R1 

R2X2 
j 

XL 

R2X2 
 

R2
R2X 

 j 
XC 

R2X2 

 R1  R2  X
L 

XC 


Y  j  
R2X2 R2X2 R2X2 R2X2

1 

AtResonance, 
XL 

L 2 C  1 L 2 C




XC 0 

R2X2 R2X2 

 
XL 

R2X2 
 

XC 

R2X2 

XLR 2X2XR2X2 

2fLR2 1  1  R2 42f 2L2
2 

42f2C2




2fC 1 

2fLR2  
L
2fC2 

R 
2 

 1
2fC 

2fL2 
 

 

C 

1 

Z L 

1 

Z 

C 2 



2 



f
1 

2

1 

LC 


1 

2 LC 

2 

1 

 1 

2 

2 2 

1 

 
L 

2fC2 

R 
2 

 1
2fC 

2fL2 

C 
2fLR2 

 
1 L

R22fL
L
R2

2 
  1   2

fCC  C 
L
R2 

2 

42f2LCC 1


LCR1 

 L
R2 LCR2 

 

C 
2 

1LCR2
42f2  1

LCLCR2
1 LCR2

f2  1

4LCLCR2

f



f

fiscalledResonantfrequency. 

IfR20 

Then f
2







LCR2 

L2C 

 

 

 

R2 
 

 

IfR1andR2=0,then 

 

 

ComparisonofSeriesandParallelResonantCircuit:

Item Seriesckt(R-L-C) Parallelckt(R–Land C) 

f
1 

2

L 

LC 
1 

R
2 

L2 


1 

2

L 

L2C 
1 

R
2 

L2 

f
1 

2

L 

L2C 

1 

2 LC LCR 

LCR 

2 

1 


 2
2 

1 

2


 1 

LCR2 


LCLCR 2 2 

2
2 

1 LCR 2 

2L 
 1 

C 

1 L 

2L C 

2 



1 

1 

 ImpedanceatResonance Minimum Maximum 

 CurrentatResonance 
V 

Maximum=R 

 V  

Minimum=(L/CR) 

 EffectiveImpedance R L 

CR 

 P.f.atResonance Unity Unity 

 ResonantFrequency 
 1

 2 

 LC 

2 

1 1


R 

2 LC L2 

 ItMagnifies Voltage Current 

 Magnificationfactor 
WL 

R 

WL 

R 









Parallelcircuit:




Z1R1  jXL R2X 2

Z2R1 jXC R22X 2

I 
V 


V


 

I
1 Z Z 1 1 1 

Where 

1 1 1 
V
VY 

 

1 

1 

HereY1Admittanceofthecircuit 

Admittanceisdefinedasthereciprocalofimpedence. 

1 L 

C 2 

Z 



V 

Z 

I1VY1
v 

 
 

R1jXL 

I2
V 

Z221 

 1 
2 

VY2I 22 

 

 

 

 
 

I 2I1I2 cos(12) 

II11I22 

 

The resultant current “I” is the vector sum of the branch currents I1& 

I2canbefoundbyusingparallelogramlowofvectorsorresolvingI2intotheirX 

I2I2 
1 2 



2 

–andY-components(oractiveandreactivecomponentsrespectively)andthen by 

combining these components. 

 

SumofactivecomponentsofI1andI2=I1cos1+I2cos2 

SumofthereactivecomponentsofI1andI2=I2sin2-I1sin1 

 

EXP–01: 

A60Hzvoltageof230Veffectivevalueisimpressedonaninductanceof 

0.265H 

(i)  Writethetimeequationforthevoltageandtheresultingcurrent.Letthe zero 

axis of the voltage wave be att= 0. 

(ii) Showthevoltageandcurrentonaphasordiagram. 

(iii) Findthemaximumenergystoredintheinductance. 

Solution:- 

Vmax 2V 2230V 

f=60Hz, W2f 260377rad/s. 

xlwl3770.265100 . 

(i) Thetime equationfor voltageisV(t)2302sin377t. 

ImaxVmax/xl230 /100.2.3 

90o(lag). 

QCurrentequationis. 

i(t)2.32sin(377t/2) 

or2.32cos377t 

(ii) Iti 
(iii) orE 

1
LI2

max
1
0.265(2.32)21.4J 

  

max 
2 2 

 

 

 

 

Example-02: 

The potential difference measured across a coil is 4.5 v, when it carries a 

direct current of 9 A. The same coil when carries an alternating current of 9A at 

25 Hz, the potential difference is 24 v. Find the power and the power factor 

when it is supplied by 50 v, 50 Hz supply. 

Solution: 

LetRbethed.c.resistanceandLbeinductanceofthecoil. 

RV/I4.5/90.5

3 



R2222066L2) 

1 

Witha.c.currentof25Hz,z=V/1. 
24
2.66

9 

xl 

2.62

xl 

xl 

At50Hz 

xl 

225L 

0.0167



2.6225.24

Z 0.525.242 

5.06 

I=50/5.26=9.5A 

P=I2/R=9.520.5=45watt. 

Example–03: 

A50-fcapacitorisconnectedacrossa230-v,50–Hzsupply.Calculate 

(a) Thereactanceofferedbythecapacitor. 

(b) Themaximumcurrentand 

(c) Ther.m.svalueofthecurrentdrawnbythecapacitor. 

Solution: 

(a) xl
wc 

 
1 


2πfe 

1 

25050106 
63.6

(c) Since230vrepresentsther.m.svalue 
QIrms230/xl230/63.63.62A 

(b) ImIr.m.s 3.62 5.11A 

Example–04: 

InaparticularR–Lseriescircuitavoltageof10vat50Hzproducesa current of 700 

mA. What are the values of R and L in the circuit ? 

Solution: 

(i) Z



V1z 

10700103 

 

 

 

 

 

 

10/700103100/7 

R298696L210000/49 ------------------------- (I) 

(ii) InthesecondcaseZ

Q10500103 20 

20 

(R298696L2) 

Z2R2 2.6620.52 

2 2 

R2(250L)2 

R298696L2 

(R298696L2) 

R2(275L)2 

R2222066L2) 



CHAPTER-
07TRANSIEN

TS 

Whenever a network containing energy storage elements such as inductor or capacitor is 
switched from one condition to another,either by change in applied source or change in 
network elements,the response current and voltage change from one state to the other 
state.Thetimetakentochangefromaninitialsteadystatetothefinalsteadystateisknown as the 
transient period.This response is known as transient response or transients.The response of 
the network after it attains a final steady value is independent of time and is 
calledthesteady‐stateresponse.Thecompleteresponseofthenetwork isdeterminedwith 
thehelpofadifferentialequation. 

STEADYSTATEANDTRANSIENTRESPONSE 

In a network containing energy storage elements, with change in excitation, the currents 
and voltages in the circuit change from one state to other state. The behaviour of the 
voltageorcurrentwhen it is changedfrom onestatetoanother is calledthetransientstate. The 
time taken for the circuit to change from one steady state to another steady state is called 
the transient time. The application of KVL and KCL to circuits containing energy 
storageelementsresultsindifferential,ratherthanalgebraicequations.whenweconsidera 
circuit containing storage elements which are independent of the sources, the response 
depends upon the nature of the circuit and is called natural response. Storage elements 
deliver their energy to the resistances. Hence, the response changes, gets saturated after 
some time,and is referred to asthe transient response. When we consider a source acting 
on a circuit, the response depends on the nature of the source or sources.This response is 
called forced response. In other words,the complete response of a circuit consists of two 
parts; the forced response and the transient response. When we consider a differential 
equation, the complete solution consists of two parts: the complementary function and the 
particularsolution.Thecomplementaryfunctiondiesoutaftershort interval,andisreferred to as 
the transient response or source free response. The particular solution is the steady state 
response, or the forced response. The first step in finding the complete solution of a circuit 
is to form a differential equation for the circuit. By obtaining the differentialequation, 
several methods can be used to find out the complete solution. 

DCRESPONSEOFANR‐LCIRCUIT 

Consideracircuitconsistingofaresistanceandinductanceasshowninfigure.Theinductor in the 
circuit is initially uncharged and is in series with the resistor.When the switch S is closed ,we 
can find the complete solution for the current.Application of kirchoff’s voltage law to the 
circuit results in the following differential equation. 

 



Figure1.1 

V = Ri + L  ……………………………………………………………..1.1 

Or + i =   ……………………………………………………………1.2 

Intheaboveequation,thecurrentIisthesolutiontobefoundandVistheappliedconstant 

voltage.ThevoltageVisappliedtothecircuitonlywhentheswitchSisclosed. Theaboveequation is a linear 

differential equation of first order.comparing it with anon‐homogenious differential equation 

+ P x = K ........................................................................ 1.3 

whosesolutionis 

X= dt+c …………………………………………….1.4 

 
Wherecisanarbitraryconstant.Inasimilarway,wecanwritethecurrentequationas 

i=c dt 

Hence,i= c + …………………………………..1.5 

 
To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 
Fig.1.1,theswitchsisclosedatt=0.att=0‐,i.e.justbeforeclosingtheswitchs,thecurrentinthe inductor 
is zero. Since the inductordoesnotallowsuddenchanges in currents, at t=o+ just after the switch 
is closed,the current remains zero. 

Thusatt=0,i=0 

Substitutingtheaboveconditioninequationc,wehave 0 = c 

+ 

Substitutingthevalueofcinequationc,weget 

i = ‐  

 

i = (1‐ ) 
 

i = (1‐ ) (where
 

i= (1‐ )(where ) .................................................... 1.6 



 

 
Figure1.2 

Equationdconsistsoftwoparts,thesteadystatepart V/R)andthetransientpart . 

 
WhenswitchSisclosed,theresponsereachesasteadystatevalueafteratimeintervalas shown in 
figure 1.2. 

Here the transition period is defined as the time taken for the current to reach its final 
or stedy state value from its initial value.In the transient part of the solution, the 
quantityL/RisimportantindescribingthecurvesinceL/Risthetimeperiodrequired for the 
current to reach its initial value of zero to the final value V/R. The time 

constant of a function isthetimeatwhichtheexponentofeisunity,wheree is the 

base of the natural logarithms.The term L/R is called the time constant and is denoted 

by τ . 

So,τ= sec 

 
Hence,thetransientpartofthesolutionis 

i = =  

AtoneTimeconstant,thetransienttermreaches36.8percentofitsinitialvalue. 

 

i(τ)=‐  =‐ =‐0.368 

Similarly, 

i(2τ)=‐ 

  

 
=‐0.135 

i(3τ)=‐ 
 

=‐0.0498 

i(5τ)=‐ 
 

=‐0.0067 

 
After5TCthetransientpartreachesmorethan99percentofitsfinalvalue. 



InfigureAwecanfindoutthevoltagesandpowersacrosseachelementbyusingthecurrent. 

Voltageacrosstheresistoris 

=Ri= R (1‐ ) 

Hence, =V (1‐ ) 
 

Similarly,thevoltageacrosstheinductanceis = 

L = L =V  

TheresponsesareshowninFigure1.3. 
 

 
 

 
Figure1.3 

 

 
Powerintheresistoris 

= i =V (1‐ )
 

= (1‐ ) +  

 
Powerintheinductoris 

 
= i =V 

 

= ( ‐ ) 

 
Theresponsesareshowninfigure1.4. 



 
 

Figure1.4 
 
 
 

 
Problem:1.1 

 

Figure1.5 

AseriesR‐L circuitwithR=30ΩandL=15HhasaconstantvoltageV=50Vappliedatt=0as shown in Fig. 

1.5 . determine the current i, the voltage across resistor and across inductor. 

Solution: 

ByapplyingKirchoff’svoltageLaw,weget 

 
15 +30i=60 

 

+2i=4 

 
Thegeneralsolutionforalineardifferentialequationis i=c

+ dt 

where P=2,K=4 

puttingthe valuesi=c

+ dt 

i=c + 2 



Att=0,theswitchsisclosed. 

Sincetheinductorneverallowssuddenchangeincurrents.Att= thecurrentinthecircuitis zero. 

Therefore at t= , i =0 

0=c + 2 

 
c =‐ 2 

 
Substitutingthevalueofcinthecurrentequation,wehave i=2(1‐ 

) A 

voltageacrossresistor( )=iR=2(1‐ )x30=60(1‐ )v 
 

voltageacrossinductor( )=L =15 2(1‐ )=30 v=  

 
 
 

 
DCRESPONSEOFANR‐CCIRCUIT 

Consideracircuitconsistingofaresistanceandcapacitanceasshowninfigure.Thecapacitorinthe circuitis 
initiallyunchargedand isin series with theresistor.When the switch Sisclosedat t=0,we can find the 
complete solution for the current.Application of kirchoff’s voltage law to the circuit results in the 
following differential equation. 

 

 
Figure1.6 

V=Ri+ ……………………………………………………………..1.7 By 

differentiating the above equation, we get 

 

0=R + i ……………………………………………………1.8 

Or 
 

+ 

 
 

i=0 

  

 
……………………………………………………1.9 



Equationcisalineardifferentialequationwithonlythecomplementaryfunction.Theparticular solution 
for the above equationis zero. The solution for this type of differential equationis 

i=c …………………………………..1.10 
 

 
To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 
Fig.theswitchsisclosedatt=0.Sincethecapacitordoesnotallowsuddenchangesinvoltage,it will act 
as a short circuitat t=o+ just after the switch is closed. 

Sothecurrentinthecircuitatt=0+is 

 
Thusatt=0,thecurrenti= 

 

Substitutingtheaboveconditioninequationc,wehave = c 

Substitutingthevalueofcinequationc,weget 

i= ………………………………………………1.11 

 

 
Figure1.7 

 

 
WhenswitchSisclosed,theresponsedecaysasshowninfigurre. The term 

RCis called the time constant and is denoted by τ . 

So,τ=RCsec 

After5TCthecurvereaches99percentofitsfinalvalue. 

InfigureAwecanfindoutthevoltageacrosseachelementbyusingthecurrentequation. Voltage across 

the resistor is 



=R i = R 

 

Hence, =V  

Similarly,voltageacrossthecapacitoris 

= 
 

= 
 

=‐ +c 

=‐V +c 

Att=0,voltageacrosscapacitoriszero So, c 

= V 

And 

= V  

TheresponsesareshowninFigure1.8. 

 

 
Figure1.8 

Power in the resistor is 

= i =V 
 

=
 

Powerinthecapacitoris 

= i =V (1‐ 



= ( ‐ ) 

 
Theresponsesareshowninfigure1.9. 

 

 
Figure1.9 

Problem:1.2 

AseriesR‐CcircuitwithR=10ΩandC=0.1FhasaconstantvoltageV=20Vappliedatt=0as shown in Fig. 

determine the current i, the voltage across resistor and acrosscapacitor. 
 

 

Figure1.10 

Solution: 

ByapplyingKirchoff’svoltageLaw,weget 

10i + =20 

Differentiatingw.r.t.tweget 

 
10 + =0 

 

+ i= 0 

 
Thesolutionforaboveequationis 



i=c  

 
Att=0,theswitchsisclosed. 

Sincethecapacitornever allowssuddenchangeinvoltages.Att= thecurrentinthecircuitis i = 

V/R=20/10 =2 A 

.Thereforeatt=0,i=2A 

thecurrentequationisi=2  

 
voltageacrossresistor( )=iR=2 x10=20 v 

 

 

voltageacrosscapacitor( )=V =20(1‐ )V 
 
 
 
 
 
DCRESPONSEOFANR‐L‐CCIRCUIT 

Consider a circuit consisting of a resistance, inductanceandcapacitance as shown in figure.The 

capacitorandinductorinthecircuitisinitiallyunchargedandareinserieswiththeresistor.When the 

switch S is closedat t=0 , we can find the complete solution for the current.Application of kirchoff’s 

voltage law to the circuit results in the following differential equation. 

 

 
Figure1.11 

V=Ri+L + ……………………………………………………………..1.12 By 

differentiating the above equation, we get 

0= R + i= ..................................................................... 1.13 

Or 

+ + i=0............................................................. 1.14 



The above equation c is a second orderlinear differential equation with only the complementary 
function.Theparticularsolutionfortheaboveequationiszero.Thecharacteristicsequationforthis type of 
differential equationis 

+ D+ =0 ....................................................................1.15 

Therootsofequation1.15are 

= ‐ 
 

Byassuming =‐ and =
 

and =  

Here maybepositive,negativeorzero. 

Case I : >  

Then,therootsareReal andUnequalandgiveanoverdampedResponseasshowninfigure 1.12. 

Thesolutionfortheaboveequationis:i= +  
 

 
Figure1.12 

Case II :  

Then,therootsareComplexConjugate,andgiveanunder‐dampedResponseasshownin figure 

1.13. 

 



Figure1.13 

Thesolutionfortheaboveequationis:i= Case III : 

Then,therootsareEqualandgiveanCritically‐dampedResponseasshowninfigure1.14. 
 

 
Figure1.14 

Thesolutionfortheaboveequationis:i= Problem : 

1.3 

AseriesR‐L‐CcircuitwithR=20Ω,L=0.05Hand C=20μFhasaconstantvoltageV=100V applied at t=0 

as shown in Fig. determine the transient current i . 
 

Figure1.15 
 

 
Solution: 

ByapplyingKirchoff’svoltageLaw,weget 

100=30i 0.05 

Differentiatingw.r.t.tweget 

 
+20 + i=0 



+400 + i=0 

 
+400D+ i=0 

 
Therootsofequationare 

= ‐ 
 

 
=‐200 

 
‐200+j979.8 

 
‐200‐j979.8 

 
Thereforethecurrent 

i=  

i= A 

 
 
 

 
Att=0,theswitchsisclosed. 

Sincetheinductorneverallowssuddenchangeincurrents.Att= the currentinthecircuitis zero. 

Therefore at t= , i =0 

i =0 =(1)  
 

=0andi= A 

 
Differentiatingw.r.t.tweget 

 

 

Att=0,thevoltageacrosstheinductoris100V 

=100 or = 2000 

Att=0, =2000= 

= =2.04 

 

 
Thecurrentequationis 



i= 
 
 
 
 
 

ANALYSISOFCIRCUITSUSINGLAPLACETRANSFORMTECHNIQU

E 

TheLaplacetransformisapowerfulAnalyticalTechniquethat iswidelyusedtostudythe 

behaviorofLinear,Lumpedparametercircuits.LaplaceTransformconvertsatimedomain 

functionf(t) toafrequencydomainfunctionF(s) andalsoInverseLaplacetransformation 

converts the frequency domain function F(s) back to a time domain function f(t). 

L{f(t)}=F(s)= f(t)dt ................................................................................... LT1 

 

{ F(s)} = f(t) = ds .................................................................... LT2 

 
DCRESPONSEOFANR‐LCIRCUIT(LTMethod) 

LetusdeterminethesolutioniofthefirstorderdifferentialequationgivenbyequationAwhich 

isfortheDC responseofaR‐LCircuitunderthezeroinitialconditioni.e.currentiszero,i=0at t= and 

hence i=0at t= in the circuit in figure A by the property of Inductance not allowing 

thecurrenttochangeasswitchisclosedatt=0. 

 

 
FigureLT1.1 

V=Ri+L ……………………………………………………………..LT1.1 

TakingtheLaplaceTransformofbothesidesweget, 

=R I(s) + L [ s I(s) –I(0) ] ..................................................LT1.2 

=R I(s) + L [ s I(s) ] (I(0)=0:zeroinitialcurrent) 

= I(s)[R +L s] 

I(s)= ............................................................ LT1.3 



TakingtheLaplaceInverseTransformofbothsidesweget, 

I(s)}=
 

i(t)= (DividingthenumeratoranddenominatorbyL) putting 

we get 

i(t)= = ( } 

i(t)= ( }(againputtingbackthevalueof  

i(t)= ( }= ( 1‐ )= (1‐ ) (where
 

i(t)= (1‐ ) (where ) ....................................................... LT1.4 

Itcanbeobservedthatsolutionfori(t)asobtainedbyLaplaceTransformtechniqueissameas that 
obtained by standard differential method . 

DCRESPONSEOFANR‐CCIRCUIT(L.T.Method) 

Similarly, 

LetusdeterminethesolutioniofthefirstorderdifferentialequationgivenbyequationAwhich is for 
the DC response of a R‐C Circuit under the zero initial conditioni.e.voltage across capacitor is 
zero, =0at t= and hence =0at t= in the circuit in figure A by the property 

ofcapacitancenotallowingthevoltageacrossittochangeasswitchisclosedatt=0. 

 

 
FigureLT1.2 

V=Ri+ ……………………………………………………………..LT1.5 

TakingtheLaplaceTransformofbothsidesweget, 

=R I(s) + [ +I (0) ] ..........................................LT1.6 

=R I(s) + [ ] (I(0)=0:zeroinitialcharge) 

=I(s)[R+ ]=I(s)[ ] 



I(s) = [ ] = ………………………………..LT 1.7 

TakingtheLaplaceInverseTransformofbothsidesweget, 

I(s)}=
 

i(t)= (DividingthenumeratoranddenominatorbyRC) putting 

we get 

i(t) = =  

i(t)= (puttingbackthevalueof  

i(t)= (where ………………………………..LT1.8 

i(t)= ) ( where RC ) 

Itcanbeobservedthatsolutionfori(t)asobtainedbyLaplaceTransformtechniqueinqis same as 
that obtained by standard differential method in d. 

DCRESPONSEOFANR‐L‐CCIRCUIT(L.T.Method) 

 

 
FigureLT1.3 

Similarly, 

Let us determine the solution i of the first order differential equation given by equation A which 
isfortheDC responseofaR‐L‐CCircuitunderthezeroinitialconditioni.e.theswitchsisclosed at t=0.at 
t=0‐,i.e. just before closing the switch s , the current in the inductor is zero. Since the inductor 
does not allow sudden changes in currents, at t=o+ just after the switch is closed,the current 
remains zero. also thevoltage across capacitor is zero i.e. =0at t= and hence =0 

att= inthecircuitinfigurebythepropertyofcapacitancenotallowingthevoltageacrossit to 

suddenly change as switch is closed at t=0. 

V=Ri+L ………………………………..LT1.9 

TakingtheLaplaceTransformofbothsidesweget, 



=R I(s) ++ L [ s I(s) –I(0) ]+ [ +I (0) ] ......................................... LT1.10 

=R I(s) + [ ] ( &I(0)=0:zeroinitial 

charge ) 

= I(s)[R +L ] = I(s)[ ] 

I(s) = [ ] =  ………………………………..LT1.11 

Taking the Laplace Inverse Transform of both sides we get, 

I(s)}=
 

i(t)= ( Dividingthenumeratoranddenominator byLC) i(t) = 

 

putting = weget i(t) =

 

Thedenominatorpolynomialbecomes=  

where, = =

where, = ; = and =  

BypartialFractionexpansion,ofI(s), 

I(s) = + 
 

A= s=  

=
 

B= s=  

= =‐ 
 

I(s)= (
 

TakingtheInverseLaplaceTransform 



i(t)= +  

Where and areconstantstobe determinedand and arentheroots ofthe equation. 

Nowdependinguponthevaluesof and ,wehavethreecasesoftheresponse. CASE I : 

When the roots are Real and Unequal, it gives an over‐damped response. 

or ;Inthiscase,thesolutionisgivenby 

 

i(t)= + ) ........................................ LT1.12 

 
or i(t)= +  fort 0 

CASEII:WhentherootsareRealandEqual,itgivesanCritically‐dampedresponse. 

=  or ;Inthiscase,thesolutionisgivenby or 

i(t)= ( + ) fort 0 ........................................LT1.13 

CASEIII:WhentherootsareComplexConjugate,itgivesanunder‐dampedresponse. or

 ; In this case, the solution is given by 

i(t)= +  fort 0 

where, =  

Let =  =j where j= and =  
 

 

Hence, i(t)= + ) 
 

 

i(t) =
 

i(t) =  

i(t)= ………………………………..LT1.14 
 

 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,xxxxxxxxxxxxxxxxx,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 



CHAPTER8 
 

TWO-PORTNETWORKS 
 

 

 
One-Port 

Network 

+i1 

 

v 

- 
 

 

 

 
a) One port network is a two terminal electrical network in which, current 

entersthroughoneterminalandleavesthroughanotherterminal.Resistors, 
inductorsandcapacitorsaretheexamplesofoneportnetworkbecauseeach one 

has two terminals. One port network representation is shown in the 
following figure. 

b) A pair of terminals at which asignal (voltageorcurrent) may enter or leaveis 

called a port. 
c) Anetworkhavingonlyonesuchpairofterminalsiscalledaone-portnetwork. 

d) Noconnectionsmaybemadetoanyother nodesinternaltothenetwork. 

e) ByKCL,wethereforehavei1=i1 

 

+  

v 

 

 
 two port network is a pair of two terminal electrical network in which, current 

entersthroughoneterminalandleavesthroughanotherterminalofeachport.Two port 

network representation is shown in the following figure.Type equation here. 

 Two-portnetworksareusedto describetherelationship between apairof 

terminals 
 The analysis methods we will discuss require the following conditions be 

met 

1. Linearity 

2. Noindependentsourcesinsidethenetwork 

3. Nostoredenergyinsidethenetwork(zeroinitialconditions) 

4. i1=i1andi2=i 
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Two-Port 

Network 

- 

 

 
 
 
 

 
1 

 

- 
i' 

1 

i2 

+ 

v 

i'2
 

  

 



TwoPortNetworkParameters 

Therearevariousparametersneededtoanalyzeatwoport 

network. For examples, Z parameters, Y parameters, h 

parameters, g parameters, ABCD parametersetc. 

Letusdiscussthesenetworkparametersonebyonetogaina better 

understanding of their application and uses. 

 
ImpedanceParameters 

 Supposethecurrentsandvoltagescanbemeasured. 

 Alternatively,ifthecircuitintheboxisknown,V1andV2canbecalculated 
based on circuit analysis. 

 Relationshipcanbewrittenintermsoftheimpedanceparameters. 

 Wecanalsocalculatetheimpedanceparametersaftermakingtwosetsof 

measurements. 

V1=z11I1+z12I2 

V2=z21I1+z22I2 

Iftherightportisanopencircuit (I2=0),thenwecan easilysolvefor two of the 

impedance parameters: Similarly by open circuiting left hand port (I1=0) we can solve for 

the other two parameters. 
 

2 
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https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/abcd-parameters-of-transmission-line/


  

 
ImpedanceParameterEquivalent 
 

 

 

 

V1=z11I1+z12I2 

V2=z21I1+z22I2 

 

 

 

 Onceweknowwhattheimpedanceparametersare,wecanmodel the 

behavior of the two-port with an equivalent circuit. 

 NoticethesimilaritytoTh´eveninandNorton equivalents 
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I1(s) I2(s) 

+ 

V1(s) 

- 

z11 z22 

z12I2 z21I1 

+ 

V2(s) 

- 



V 

V 

I 

1 

1 

AdmittanceParameters 

 
+ 

v 2 

 
 
 
 
 

 

I1=y11V1+y12V2 

I2=y21V1+y22V2 

Y11=inputadmittance= 

 
 
 
 
 
 
 

 
I1V0 

2 

1 

Y=forwardtransfer admittance=I2V0 
21 2 

1 

 

Y =outputadmittance=I1V0 
22 1 

2 

 

Y=reversetransferadmittance= 
I1V0 

12 
 

 

HybridParameters 

1 

2 

 

 

 

 

V1=h11I1+h12V2 

I2=h21I1+h22V2 

h11=inputimpedance=V1V0 
2 

1 

 

h = forwardcurrentratio =I2V0 
21 2 

1 

 
 

h12 
=reversevoltageratio=V1I0 

V2 

 
 

h22 
=output admittance=

I2I0 

V2 
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V 

V 

I 

 

 
Two-Port 

Network 

- 

 

 

 
 
 
 

 
1 

 

 

- 
i' 

1 

i2 

+ 

v 

 
i'2  

  

 



+ + 

 
 

_ 

20 20  

_ 

+ 

V1 

_ 

 

s 
s 

 

V2 

_ 

    

1 

2 

Example: 

 
Giventhefollowingcircuit.DeterminetheZparameters. 

 

 

I1 8 10 
I2 

 

 

 

 

 

 

 

 
Z

11
=8+20||30=20

Z
22

=20||30=12

Z
12 


V1I0 

I2 

V
20xI2x20

8xI Thereforez 
8xI28Ω=z 

1 2030 2 12 I 
21 

TheZparameterequationscanbeexpressedinmatrixformasfollows. 

V1
z11 z12I1

V z z I 
2 21 222 



V1

20 8I1

V 8 12 I 

 

Example: 

2  2



Giventhefollowingcircuit.DeterminetheYparameters. 

I1 1 
I2 

 

 
 

 

 

 

1



I
1
=y

11
V

1
+y

12
V

2
I

2
=

y
21

V
1
+y

22
V

2 
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I2 

V1 

I2 

V2 

V1 

 

1 

s 

 
s 

 
 

 

y  
I1V0 

12 
V 1 

2 

V 11 V 

I1 1 
I2 
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CHAPTER9 
 

LOWPASSFILTERINTRODUCTION 

Basically, an electrical filter is a circuit that can be designed to modify, 
reshapeorreject allunwantedfrequenciesofanelectricalsignalandacceptorpassonly 

thosesignalswantedby thecircuit’s designer.Inother wordsthey“filter-out” unwanted 
signals and an ideal filter will separate and pass sinusoidal input signals based upon 

their frequency. 

In low frequency applications(up to 100kHz),passivefiltersaregenerally 
constructed using simple RC(Resistor-Capacitor) networks, while higher frequency 
filters (above 100kHz) are usually made from RLC (Resistor-Inductor-Capacitor) 
components. 

Passive Filters are made up of passive components such as resistors, 
capacitorsand inductorsand haveno amplifying elements(transistors,op-amps,etc)so 
have no signal gain, therefore their output level is always less than the input. 

Filters are so named according to the frequency range of signals that they 
allow to pass through them, while blocking or “attenuating” the rest. The most 
commonly used filter designs are the: 

 1. The Low Pass Filter – the low pass filter only allows low frequency signals from 

0Hz to its cut-off frequency, ƒc point to pass while blocking those any higher. 

 2. The High Pass Filter – the high pass filter only allows high frequency signals 

from its cut-off frequency, ƒc point and higher to infinity to pass through while 

blocking those any lower. 

 3. The Band Pass Filter – the band pass filter allows signals falling within a certain 

frequencybandsetupbetweentwopointsto passthroughwhileblockingboth the 

lower and higher frequencies either side of this frequency band. 

 4 Band Stop Filter - It is so called band-elimination, band-reject, or notch filters; 

this kind of filter passes all frequencies above and below a particular range set by 

the component values. 

SimpleFirst-orderpassivefilters(1storder)canbemadebyconnecting 
together a single resistor and a single capacitor in series across an input signal, (Vin) 
with the output of the filter, (Vout ) taken from the junction of these two components. 
Depending onwhichway aroundweconnect theresistor and thecapacitorwithregards to 
the output signal determines the type of filter construction resulting in either a Low 
Pass Filter or a High Pass Filter. 

As the function of any filter is to allow signals of a given band of 
frequencies topass unalteredwhile attenuatingorweakeningallothers those are not 
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wanted, we can define the amplitude response characteristics of an ideal filter by using 
an ideal frequency response curve of the four basic filter types as shown. 

 
IDEALFILTERRESPONSECURVES 

 

A Low Pass Filter can be a combination of capacitance, inductance or 
resistance intended to produce high attenuation above a specified frequency and little or 
no attenuation below that frequency. The frequency at which the transition occurs is 
called the “cutoff” frequency. The simplest low pass filters consist of a resistor and 
capacitor but more sophisticated low pass filters have a combination of series inductors 
and parallel capacitors. In this tutorial we will look at the simplest type, a passive two 
component RC low pass filter. 

 
THELOWPASSFILTER 

A simple passive RC Low Pass Filter or LPF, can be easily made by 
connecting together in series a single Resistor with a single Capacitor as shown below.In 
this type of filter arrangement the input signal (Vin) is applied to the series combination 
(both the Resistor and Capacitor together) but the output signal (Vout ) is taken across 
the capacitor only. This type of filter is known generally as a “first-order filter” or “one-
pole filter”, why first-order or single-pole?, because it has only “one” reactive 
component, the capacitor, in the circuit. 

 
RCLOWPASSFILTERCIRCUIT 

As  mentioned 
previously in theCapacitive 
Reactance tutorial, the reactance of a 
capacitor varies inversely with 
frequency, while the value of the 
resistor remains constant as the 
frequency changes. At lowfrequencies 
the capacitive reactance, 
(Xc)ofthecapacitorwillbevery 
large compared to the resistive value of the resistor, R and as a result the voltage across 
the capacitor, Vc will also be large while the voltage drop across the resistor, Vr will be 
much lower. At high frequencies the reverse is true with Vc being small and Vr being 
large. 

While the circuit above is that of anRC Low Pass Filtercircuit, it can also 
beclassedasafrequencyvariablepotentialdividercircuitsimilartotheonewelooked 

 

 
85 



at in theResistorstutorial. In that tutorial we used the following equation to calculatethe 
output voltage for two single resistors connected in series. 

 
 
 
 

 

 

 
WealsoknowthatthecapacitivereactanceofacapacitorinanACcircuit 

isgiven as: 

 

 

 
OppositiontocurrentflowinanACcircuitiscalledimpedance,symbol Z and 

for a series circuit consisting of a single resistor in series with a single capacitor, the 
circuit impedance is calculated as: 

 

 

 
Then by substituting our equation for impedance above into the resistive 

potential divider equation gives us: 
 

RCPOTENTIALDIVIDEREQUATION 
 

 

 
So, by using the potential divider equation of two resistors in series and 

substituting for impedance we can calculate the output voltage of an RC Filter for any 
given frequency. 
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LOWPASSFILTEREXAMPLE 

A Low Pass Filter circuit consisting of a resistor of 4k7Ω in series with a 
capacitor of 47nF is connected across a 10v sinusoidal supply. Calculate the output 
voltage (Vout ) at a frequency of 100Hz and again at frequency of 10,000Hz or 10kHz. 

 
 
 
 

 
VoltageOutputata Frequencyof100Hz. 

 

 
 

 

 

 
Voltage Outputata Frequencyof10,000Hz(10kHz). 

 

 
 

 

FREQUENCYRESPONSE 

We can see from the results above that as the frequency applied to the RC network 
increasesfrom 100Hz to 10 kHz,thevoltagedropped acrossthecapacitorand therefore the 
output voltage (Vout) from the circuit decreases from 9.9v to 0.718v. 

Byplottingthenetworksoutputvoltageagainstdifferentvaluesofinputfrequency, the 
Frequency Response Curve or Bode Plot function of the low pass filter circuit can be 
found, as shown below. 
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Frequency Response of a 1st-order Low Pass Filter 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

The Bode Plotshows the Frequency Response of the filter to be nearly flat 
for low frequencies and the entire input signal is passed directly to the output, resulting 
in a gain of nearly 1, called unity, until it reaches its Cut-off Frequency point (ƒc). This is 
because the reactance of the capacitor is high at low frequencies and blocks any current 
flow through the capacitor. 

After this cut-off frequency point the response of the circuit decreases to 
zero at a slope of -20dB/ Decade or (-6dB/Octave) “roll-off”. Note that the angle of the 
slope, this -20dB/ Decade roll-off will always be the same for any RC combination. 

Any high frequency signals applied to the low pass filter circuit above this 
cut-off frequency point will become greatly attenuated, that is they rapidly decrease. 
This happens because at very high frequencies the reactance of the capacitor becomesso 
low that it gives the effect of a short circuit condition on the output terminals resulting 
in zero output. 

Then by carefully selecting the correct resistor-capacitor combination, we 
can create a RC circuit that allows a range of frequencies below a certain value to pass 
through the circuit unaffected while any frequencies applied to the circuit above thiscut-
off point to be attenuated, creating what is commonly called a Low Pass Filter. 
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For this type of “Low Pass Filter” circuit, all the frequencies below thiscut-
off, ƒc point that are unaltered with little or no attenuation and are said to be in the 
filters Pass band zone. This pass band zone also represents the Bandwidth of the filter. 
Any signal frequencies above this point cut-off point are generally said to be inthe filters 
Stop band zone and they will be greatly attenuated. 

This “Cut-off”, “Corner” or “Breakpoint” frequency is defined as being the 
frequency point where the capacitive reactance and resistance are equal, R = Xc = 4k7Ω. 
When this occurs the output signal is attenuated to 70.7% of the input signal value or - 
3dB (20 log (Vout/Vin)) of the input. Although R = Xc, the output is not half of the input 
signal. This is because it is equal to the vector sum of the two and is therefore 0.707 of 
the input. 

As the filter contains a capacitor, the Phase Angle(Φ)oftheoutputsignal 
LAGS behindthatoftheinputandatthe-3dBcut-offfrequency(ƒc)andis- 45o 

outofphase.Thisis dueto thetimetaken to chargetheplates ofthecapacitor as the input 
voltage changes, resulting in the output voltage (the voltage across the capacitor) 
“lagging” behind that of the input signal. The higher the input frequency applied to the 
filter the more the capacitor lags and the circuit becomes more and more“out ofphase”. 

The cut-off frequency point and phase shift angle can be found by using 
the following equation: 

 
CUT-OFFFREQUENCYANDPHASESHIFT 

 

 

 

 

 
Then for our simple example of a “Low Pass Filter” circuit above, the cut- 

off frequency (ƒc) is given as720Hz with an output voltage of 70.7% of the input voltage 
value and a phase shift angle of -45o. 

 
HIGHPASSFILTERS 

A High Pass Filter or HPF, is the exact opposite to that of the previously 

seen Low Pass filter circuit, as now the two components have been interchanged with 

the output signal ( Vout ) being taken from across the resistor as shown. 

Where as the low pass filter only allowed signals to pass below its cut-off 
frequency point, ƒc, the passive high pass filter circuit as its name implies, only passes 
signals above the selected cut-off point, ƒc eliminating any low frequency signals from 
the waveform. Consider the circuit below. 
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THEHIGHPASSFILTERCIRCUIT 
 
 
 
 
 
 

 
 
 
 

 
In this circuit arrangement, the reactance of the capacitor is very high 
atlowfrequenciessothecapacitoractslikeanopencircuitandblocksanyinputsignals at Vin 
until the cut-off frequency point (ƒc) is reached. Above thiscut-offfrequency point the 
reactance of the capacitor has reduced sufficiently as to now act more like a short circuit 
allowing the entire input signal to pass directly to the output as shown below in the 
High Pass Frequency Response Curve. 

 
FREQUENCYRESPONSEOFA1STORDERHIGHPASSFILTER. 
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TheBodePlotor FrequencyResponse Curve abovefor a High Pass filter is 
the exact opposite to that of a low pass filter. Here the signal is attenuated or damped at 
low frequencies with the output increasing at +20dB/Decade (6dB/Octave) until the 
frequency reaches thecut-off point ( ƒc) where again R = Xc. It has a response curve that 
extends down from infinity to the cut-off frequency, where the output voltage amplitude 
is 1/√2 = 70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input value. 

Also we can see that the phase angle (Φ) of the output signal LEADS thatof 
the input and is equal to+45oat frequency ƒc. Thefrequency responsecurvefor a high pass 
filter implies that the filter can pass all signals out to infinity. However in practice, the 
high pass filter response does not extend to infinity but is limited by the electrical 
characteristics of the components used. 

The cut-off frequency point for a first order high pass filter can be found 
using the same equation as that of the low pass filter, but the equation for the phaseshift 
is modified slightly to account for the positive phase angle as shown below. 

 
CUT-OFFFREQUENCYANDPHASESHIFT 

 
 
 
 
 
 

 

 

 
Thecircuitgain,AvwhichisgivenasVout/Vin(magnitude)andiscalculatedas: 

 

 

 

 

 
HIGHPASSFILTEREXAMPLE. 

Calculate the cut-off or “breakpoint” frequency ( ƒc ) for asimple highpass 
filter consisting of an82pF capacitor connected in series with a 240kΩ resistor. 
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BANDPASSFILTERS 

The cut-off frequency or ƒc point in a simple RC passive filter can be 
accurately controlled using just a single resistor in series with anon-polarized capacitor, 
and depending upon which way around they are connected either a low pass or a high 
pass filter is obtained. 

 
One simple use for these types of Passive Filters is in audio amplifier 

applications or circuits such as in loudspeaker crossover filters or pre-amplifier tone 
controls. Sometimes it is necessary to only pass a certain range of frequencies that do 
not begin at 0Hz, (DC) or end at some high frequency point but are within a certain 
frequency band, either narrow or wide. 

By connectingor “cascading” togetherasingleLow PassFilter circuitwith a 
High Pass Filter circuit, we can produce another type of passive RC filter that passes a 
selected range or “band” of frequencies that can be either narrow or wide while 
attenuating all those outside of this range. This new type of passive filter arrangement 
produces a frequency selective filter known commonly as a Band Pass Filter or BPF for 
short. 

 
BANDPASSFILTERCIRCUIT 

 
 
 
 
 
 
 
 
 
 
 

Unlike alow pass filterthat only passsignals of a low frequency range 
orahighpassfilterwhichpasssignalsofahigherfrequencyrange,aBandPass Filters passes 
signals within a certain “band” or “spread” of frequencies without distorting the input 
signal or introducing extra noise. This band of frequencies can be any width and is 
commonly known as the filters Bandwidth. 

Bandwidth is commonly defined as the frequency range that exists 
between two specified frequency cut-off points ( ƒc ), that are 3dB below the maximum 
centre or resonant peak while attenuating or weakening the others outside of these two 
points. 

Then for widely spread frequencies, we can simply define the term 
“bandwidth”, BW as being the difference between the lower cut-off frequency (ƒcLOWER ) 
and the higher cut-off frequency ( ƒcHIGHER ) points. In other words, BW = ƒH– ƒL. Clearly 
for a pass band filter to function correctly, the cut-off frequency of the low pass filter 
must be higher than the cut-off frequency for the high pass filter. 

The“ideal”BandPassFiltercanalsobe usedto isolateorfilteroutcertain 
frequenciesthatliewithinaparticularbandoffrequencies,forexample,noise 
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cancellation. Band pass filters are known generally as second-order filters, (two-pole) 
because they have “two” reactive component, the capacitors, within their circuit design. 
One capacitor in the low pass circuit and another capacitor in the high pass circuit. 

 
FrequencyResponseofa2ndOrderBandPassFilter. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The Bode Plot or frequency response curve above shows the 

characteristics of the band pass filter. Here the signal is attenuated at low frequencies 

with the output increasing at a slope of +20dB/Decade (6dB/Octave) untilthe frequency 
reaches the “lower cut-off” point ƒL. At this frequency the output voltage is again 1/√2 = 
70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input. 

The output continues at maximum gainuntil itreaches the “upper cut-off” 
point ƒHwhere the output decreases at a rate of -20dB/Decade (6dB/Octave)attenuating 
any high frequency signals. The point of maximum output gain is generally the 
geometric mean of the two -3dB value between the lower and upper cut-off points and 

is called the “Centre Frequency” or “Resonant Peak” value ƒr. This geometric mean value 

is calculated as being ƒr2= ƒ(UPPER)x ƒ(LOWER). 

A band pass filter is regarded as a second-order (two-pole) type filter 
because it has “two” reactive components within its circuit structure, then the phase 
anglewillbetwicethatofthepreviouslyseenfirst-orderfilters,i.e.,180o.Thephase 
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b 
angle of the output signal LEADSthat of the input by+90o up to the centre or resonant 
frequency,ƒrpoint were itecomes “zero” degrees (0o) or “in-phase” and then changes to 
LAG the input by -90oas the output frequency increases. 

Theupperandlower cut-offfrequencypointsfor abandpassfilter can be 
foundusingthesameformulaasthatfor boththelowandhighpassfilters,For example. 

 
 
 
 
 

 
Thenclearly,thewidthofthepassbandofthefiltercanbecontrolledbythe positioning of 

the two cut-off frequency points of the two filters. 
 

BandPassFilterExample 

Asecond-order bandpassfilter istobeconstructedusingRC components that 
will only allow a range of frequencies to pass above 1kHz (1,000Hz) 
andbelow30kHz(30,000Hz).Assumingthatboththe resistors havevalues of10kΩ´s, 

 

TheHighPassFilterStage 

The value of thecapacitor C1 required to give a cut-off frequency ƒL of 
1kHz with a resistor value of10kΩ is calculated as: 

 

 

 
Then, the values ofR1 andC1required for the high pass stage to give a cut-

off frequency of 1.0kHz are: R1 = 10kΩ´s and C1 = 15nF. 
 

TheLowPassFilterStage 

Thevalueofthecapacitor C2 requiredtogiveacut-offfrequency ƒHof30kHzwitha resistor value 
of10kΩ is calculated as: 
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calculatethevaluesofthe capacitorsrequired. 



Then,thevaluesofR2and C2requiredforthelowpassstage to givea cut- off 
frequency of 30kHz are, R = 10kΩ´s and C = 510pF. However, the nearest preferred 
value of the calculated capacitor value of 510pF is 560pF so this is used instead. 

With the values of both the resistances R1 and R2 given as 10kΩ, and the 
twovaluesofthecapacitorsC1 and C2 foundforthehighpassandlowpassfilters as 15nF and 
560pF respectively, then the circuit for oursimplepassive BandPassFilter is given as. 

 
CompletedBandPassFilterCircuit 

 

 
 
 
 
 

 

 
 
 

 

 

 
BandPassFilterResonantFrequency 

We can also calculate the “Resonant” or “Centre Frequency” (ƒr) point of the band pass 
filter were the output gain is at its maximum or peak value. This peak value is not the 
arithmetic averageof theupperand lower -3dBcut-off pointsasyoumight expect but is in 
factthe “geometric” or mean value. This geometricmeanvalueiscalculatedas being ƒr 2= 

ƒc(UPPER)x ƒc(LOWER)for example: 

CentreFrequencyEquation 
 

 Where,ƒristheresonantorcentrefrequency 

 ƒListhelower-3dBcut-offfrequencypoint 

 ƒHistheupper-3dbcut-offfrequencypoint 

And in our simple example above, the calculated cut-off frequencies were 
found tobe ƒL=1,060HzandƒH=28,420Hzusingthe filtervalues. 

Then by substituting these values into the above equation gives a central 
resonant frequency of: 
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b 

Band-stop filters 

It is so calledband-elimination,band-reject, ornotch filters; this kind of 

filter passes all frequencies above and below a particular range sety the component 

values. Not surprisingly, it can be made out of a low-pass and a high-pass filter, just like 

the band-pass design, except that this time we connect the two filter sections in parallel 

with each other instead of in series. (Figure below) 
 

Systemlevelblockdiagramofaband-stopfilter. 

Constructed using two capacitive filter sections, it looks something like 

(Figure below). 
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ButterworthFilter 
 

A Butterworth filter is a type of signal processing filter designed to have a frequency 

responseasflataspossibleinthepassband.HencetheButterworthfilterisalsoknownas 

“maximally flat magnitude filter”. It was invented in 1930 by the British engineer and 

physicist Stephen Butterworth in his paper titled “On the Theory of Filter Amplifiers”. 

The frequency response of the Butterworth filter is flat in the passband (i.e. a 

bandpassfilter)androll-offstowardszerointhestopband.Therateofroll-

offresponsedependson the order of the filter. The number of reactive elements used in the 

filter circuit will decide the order of the filter. 

The inductorand capacitorare reactive elements used in filters. But in the case of 

Butterworthfilteronlycapacitorsareused.So,thenumberofcapacitorswilldecidethe order of 

the filter. 

Here,wewilldiscusstheButterworthfilterwithalowpassfilter.Similarly,the highpassfiltercan 

be designed by just changing the position of resistanceand capacitance. 

ButterworthLowPassFilterDesign 
While designingthe filter, the designer tries to achieve a response near to the ideal filter. 

It is very difficult to match results with the exact ideal characteristic. We need to use 

complexhigher-order If youincrease theorder of thefilter,thenumber of cascade stages 

with the filter is also increased. But in practice, we cannot achieve Butterworth’s ideal 

frequency response. Because it produces excessive ripple in the passband.In Butterworth 

filter, mathematicallyitispossibletogetflatfrequencyresponsefrom0Hztothecut-off 

frequencyat -3dB with no ripple. If the frequency is more than the cut-off frequency, it 

will roll-off towards zero with the rate of -20 dB/decade for the first-order filter.If you 

increase the order of the filter, the rate of a roll-off period is also increased. And for 

second-order, it is -40 dB/decade. The quality factorfor the Butterworth filter is 0.707. 

ThebelowfigureshowsthefrequencyresponseoftheButterworthfilterforvarious orders of 

the filter 
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FrequencyResponseofButterworthFilterThegeneralizedformoffrequencyresponsefor nth-

order Butterworth low-pass filter is; 
 

 

Where, 
n=order of thefilter, 

ω=operatingfrequency(passbandfrequency)ofcircuit 
ωC=Cut-offfrequency 

ε=maximumpassbandgain=Amax 

 

Thebelowequationisusedtofindthevalueofε. 
 

 

 

Where, 
H1 =minimumpassband gain 

H0=maximumpassbandgain 

First-orderLowpassButterworthFilter 

The lowpass filter is a filter thatallows the signal with the frequency is lower than the 

cutoff frequency and attenuates the signals with the frequency is more than cutoff 

frequency.Inthefirst-orderfilter,thenumberofreactivecomponentsisonlyone.The below 

figure shows the circuit diagram of the first-order lowpass Butterworth filter. 
 

 



The low pass Butterworth filter is an active Low pass filteras it consists of the op-amp. 

Thisop-ampoperatesonnon-invertingmode.Hence,thegainofthefilterwilldecideby the 

resistorR1and RF. And the cutoff frequency decides by R and C. 

Now,ifyouapplythevoltagedividerruleatpointVaandfindthevoltageacrossa capacitor. It is 

given as; 
 

 

Becauseofthe non-invertingconfigurationofanop-amp, 
 

 

 

 

 

WHERE 
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Thebelowfigureshowsthefrequencyresponseoffirst-orderlowpassButterworth filter. 
 

Second-orderButterworthFilter 

The second-order Butterworth filter consists of two reactive components. The 

circuitdiagramofasecond-orderlowpassButterworthfilterisasshowninthe below 

figure. 
 

Inthis type of filter, resistor R and RFare the negative feedback ofop-amp. And the 

cutoff frequency of the filter decides by R2, R3, C2, and C3.The second-order 

lowpass Butterworth filter consists oftwo back-to-back connected RC networks. 

AndRListheloadresistance. First-orderandsecond-orderButterworthfiltersare very 

important. Because we can get higher-order Butterworth filter by just cascading of 

the first-order and second-order Butterworth filters. 



Let’sanalysethecircuitofsecond-orderButterworthfilter, 

 

 

ApplyKirchhoff’sCurrentLawatpointV1. 

 

 

 

 



 
 

 



Rearrangethisequation, 

 

 

Comparethisequationwiththestandard formtransfer functionforsecond-order 

Butterworth filter. And that is, 
 

 

Bycomparingaboveequations,wecanfindtheequationofcutofffrequencyand overall 

gain for the second-order lowpass Butterworth filter. 

 

Thegainoffilteris, 



 

 

 

 

 

 



Wecansaythat,thequalityfactorisonlydependsonthe gainoffilter.Andthe value of 

gain should not more than 3. If the value of gain is more than 3, the system will be 

unstable. 

 

Thevalueofqualityfactoris0.707fortheButterworthfilter.And ifweputthis value 

inequation ofquality factor, we can find the value of gain. 
 

 

 

Whiledesigningthesecond-orderButterworthfilteraboverelationmustbesatisfy. 

Thefrequencyresponseofthisfilterisasshowninbelowfigure. 
 

 

Third-orderLowpassButterworthFilter 

 

Third-orderlowpassButterworthfiltercandesignbycascadingthefirst-orderand 

second-order Butterworth filter. 



Thebelowfigureshowsthecircuitdiagramofthethird-orderlowpassButterworthfilter. 

 

Third-orderLowPassButterworthFilter 

Inthisfigure,thefirstpartshowsthe first-orderlowpassButterworthfilter,andthe second part 

shows the second-order lowpass Butterworth filter. 

 

But in this condition, the voltage gain of the first part is optional and itcan be set atany 

value.Therefore,thefirstop-ampisnottakingpartinvoltage gain.Hence,thefigurefor the 

third-order low pass filter can be expressed as below figure also; 

 

;  



 

 

 

Thevoltage gainofasecond-orderfilteraffectsthe flatnessoffrequencyresponse. If the 

gain of the second-order filter is kept at 1.586, the gain will down 3db for each 

part. So, the overall gain will down 6dB at the cutoff frequency. 

 

Byincreasingthe voltage gainofthesecond-orderfilter,wecanoffsetthe cumulative 

loss of voltage gain. 

 

Inthethird-orderButterworthfilter,therateofaroll-offperiod is-60dB/decade. And the 

frequency response ofthis filter is nearer to the ideal Butterworth filter compared 

to the first and second-order filters. The frequ 

 

 

(frequencyresponseofthisfilterisasshowninthebelowfigure.) 

 

Fourth-orderLowpassButterworthFilter 

Fourth-order Butterworth filter is established by the cascade connection of two 

second-orderlowpassButterworthfilters.Thecircuitdiagramofthe fourth-order 

lowpass Butterworth filter is as shown in the below figure. 
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