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CHAPTER1

MagneticCircuits

Introduction:

Magneticfluxlinesalwaysformclosedloops.Theclosedpathfollowedbythe  flux
lines is calleda magnetic circuit. Thus, a magnetic circuit provides a path
formagneticflux,justasanelectriccircuit providesapathfortheflowofelectric
current.Ingeneral,thetermmagneticcircuitappliestoanyclosed pathinspace, but in
the analysis of electro-mechanical and electronic system this termis
specificallyusedforcircuitscontainingamajorportionofferromagneticmaterials. The
study of magnetic circuit concepts is essential in the design, analysis and
application of electromagnetic devices like transformers, rotating machines,
electromagneticrelaysetc.

MagnetomotiveForce(M.M.F):

Flux is produced round any current — carrying coil. In order to produce the required
flux density, the coil should have the correct number of turns. The product of the
currentandthenumberofturnsisdefinedasthecoilmagnetomotiveforce(m.m.f).

Ifl=Currentthroughthecoil(A) N =
Number of turns in the coil.
Magnetomotiveforce=Currentxturns

SoM.M.F=IXN
TheunitofM.M.F.isampere—turn(AT)butitistakenasAmpere(A)sinceN has no
dimensions.

MagneticFieldIntensity:

MagneticFieldintensityisdefinedasthemagneto-motiveforceperunitlengthofthe
magnetic flux path. Its symbol is H.

Magnetomotive force

Magnetic field Intensity (H) = .
Mean length of the magnetic path

. F IN.
» H= —=T Am

I

Wherelisthemeanlengthofthemagneticcircuitinmeters.Magneticfieldintensityisalso called
magnetic field strength or magnetizing force.



Permeability:-
Everysubstancepossessesacertainpowerofconductingmagneticlines
of force. For example, iron is better conductor for magnetic lines of force than air (vaccum) .

Permeabilityofamaterial(p)isitsconductingpowerformagneticlinesofforce.ltistheratio of the
flux density. (B) Produced in a material to the magnetic filed strength (H).

Reluctance:

Reluctance(s)isakintoresistance(whichlimitsthe electricCurrent).

Fluxinamagneticcircuitislimitedbyreluctance.Thusreluctance(s)isa measureofthe opposition
offered by a magnetic circuit to the setting up of the flux.

Reluctanceistheratioofmagnetomotiveforcetotheflux.Thus

« _ Mmf /
3= /b

Itsunitisampereturnsperwebber(orAT/wb).
Permeance:-
Thereciprocalofreluctanceiscalledthepermeance(symbolA). Permeance (A)
=1/S wb/AT
TurnThasnounit.
Hencepermeanceisexpressedinwb/AorHenerys(H).

B.H.Curve:

Place a piece of an unmagnetised iron bar AB within the field of a

solenoid to magnetise it. The field H produced by the solenoid, is called

magnetisingfield,whosevaluecanbealtered(increasedordecreased)by



changing (increasing or decreasing) the current through the solenoid. If we
increase slowly the value of magnetic field (H) from zero to maximum value,
the value of flux density (B) varies along 1 to 2 as shown in the figure and the
magnetic materials (i.e iron bar) finally attains the maximum value of flux

density (Bm) at point 2 and thus becomes magnetically saturated.

Fig.2.1

Now if value of H is decreased slowly (by decreasing the current in the
solenoid) the corresponding value of flux density (B) does not decreases along
2-1 butdecreases somewhatlessrapidlyalong 2 to 3. Consequentlyduringthe

reversalof magnetization,thevalue of B is notzero, but is '13"' atH= 0. Inother

wards, during the period of removal of magnetization force (H), the iron bar is

not completely demagnetized.

In order to demagnetise the iron bar completely, we have to supply the
demagnetisastion force (H) in the opposite direction (i.e. by reserving the
directionofcurrentinthesolenoid).ThevalueofBisreducedtozeroat point 4, when
H='14'. This value of H required to clear off the residual magnetisation, is
known as coercive force i.e. the tenacity with which the material holds to its

magnetism.

If after obtaining zero value of magnetism, the value of H is made more
negative, the iron bar again reaches, finally a state of magnetic saturation at
the point 5, which represents negative saturation. Now if the value of H is

increasedfromnegativesaturation(='45')topositivesaturation(='12")a



curve '5,6,7,2' is obtained. The closed loop "2,3,4,5,6,7,2" thus represents one

complete cycle of magnetisation and is known as hysteresis loop.



CHAPTER

02COUPLEDCIRCUITS

Itisdefinedastheinterconnectedloopsofanelectricnetworkthroughthe
magneticcircuit.

Therearetwotypesofinducedemf.
(1)Staticallylnducedemf.
(2)Dynamicallylnducedemf.

Faraday’s LawsofElectro-Magnetic:

Introduction—>FirstLaw:—>
Wheneverthemagneticfluxlinkedwithacircuitchanges,anemfisinducedinit.
OR

Wheneveraconductorcutsmagneticfluxanemfisinducedinit.

SecondLaw:—>
Itstatesthatthemagnitudeofinducedemfisequaltotherateofchangeofflux linkages.

OR
Theemfinducedisdirectlyproportionaltotherateofchangeoffluxand number
of turns

Mathematically:
dé

dt
exN

e

Or

aqQ

€ =N
!

Wheree=inducedemf
N=No.ofturns ¢
= flux

‘-ve’signisduetolLenz’sLaw

Inductance:—
ItisdefinedasthepropertyofthesubstancewhichopposesanychangeinCurrent&flux.

Unit:—Henry



Fleming’sRightHandRule: —
Itstatesthat“holdyourrighthandwithfore-finger,middlefingerandthumbatrightangles

to each other. If the fore-finger represents the direction of field, thumb represents the
direction of motion of the conductor, then the middle finger represents the direction of
induced emf.”

Lenz’sLaw:—

ltstatesthatelectromagneticallyinducedcurrentalwaysflowsinsucha
directionthattheactionof magneticfieldsetupbyittendstoopposethevary cause
which produces it.

OR

Itstatesthatthedirectionoftheinducedcurrent(emf)issuchthatit opposesthe change
of magnetic flux.

(2) Dynamicallylnducedemf:—

B
B
YYYYYYY NNNANANY
A Vs A
¢ Rl
1H

Inthiscasethefieldis stationaryandtheconductorsarerotatinginan uniformmagnetic
fieldatfluxdensity‘B”Wb/mt2andtheconductorislying perpendiculartothemagnetic field. Let
‘I'is the length of the conductor and it moves a distance of ‘dx’ nt in time ‘dt’ second.

Theareasweptbytheconductor=/.dx
Hencethefluxcut=/dx.B
Changeinfluxintime‘dt’second=

Bldx
dt
E=Blv
Iftheconductorismakinganangle‘0’withthemagneticfield, then
e=BlvsinB



(1) Staticallyinducedemf:—>
Heretheconductorsareremaininstationaryandfluxlinkedwithit changes by
increasing or decreasing.

Itisdividedinto twotypes.

(i) Self-inducedemf.

(ii) Mutually-inducedemf.

(i) Self-inducedemf: - Itisdefinedastheemfinducedinacoilduetothe change
of its own flux linked with the coil.

®

Ifcurrentthroughthecoilischangedthenthefluxlinkedwithitsownturn will
also change which will produce an emf is called self-induced emf.
Self-Inductance:—>
Itisdefinedasthepropertyofthecoilduetowhichitopposesany change
(increase or decrease) of current or flux through it.
Co-efficientofSelf-Inductance(L):—>
Itisdefinedastheratioofweberturnsperampereofcurrentinthecoil.

OR

Itistheratiooffluxlinkedperampereofcurrentinthecoil.

1stMethodfor‘L’.—

_ Ng

-
Wherel=Co-efficientofself-induction N
= Number of turns

P=flux

|I=Current

4




2ndMethodforL:—> We

know that
;Mo

/!

=L I=Nd

>LI=-No

gl
(,A' (fl'

— -ﬂ = ﬂ
di ar

L/

(’0’
{

—- 4 —!' -

WherelL=Inductance

g “
¢, ==N—1s known as seli-induced emt.
df

: dal :
When — =lamp/sec.
( 4

e=1volt
L=1Henry

Acoilissaidto beaself-inductanceoflHenryif 1voltisinducedinit. When the
current through it changes at the rate of 1 amp/ sec.

3rdMethodforL:—>
MM AN
[z

WhereA=Areaofx-sectionofthecoil N =
Number of turns
L=Lengthofthecoil



(ii) Mutuallylnducedemf:-

Itis definedas theemf inducedinonecoildue tochangeincurrentin other coil.
Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will be
induced in coil ‘B’ due to change of current in coil ‘A’ by changing the

position of the rheostat.
A B

Mutualinductance:>
Itisdefinedas theemf inducedincoil ‘B’duetochangeofcurrentincoil ‘A’ is the
ratio of flux linkage incoil ‘B’ to 1lamp. Of current incoil ‘A’.

Co-efficientofMutualinductance(M):
Coefficientofmutualinductancebetweenthetwocoilsisdefinedasthe
weber-turns in one coil due to one ampere current in the other.

1stMethodfor‘M’:>

‘u. ¢

M-
I

N2 = Number of turns
M=Mutuallnductance
¢1= flux linkage
[1=Currentinampere

2ndMethodforM:—>
We know that

) k]
I

=MI=N,>¢;
:)-M/1=N2d)1



”_ J /fl_i

13

ot o

em=—1VOLT

ThenM= 1Henry

A coil is said tobe a mutual inductance of 1Henrywhen 1 volt isinducedwhen
the current of 1 amp/sec. is changed in its neighbouring coil.

3rdMethodforM:—
M M ANN,

M = (
Co-etticientotCoupling:
Considertwo magneticallycoupledcoilshavingNiandNzturnsrespectively.
Their individual co-efficient of self-inductances are

M M. AN ;:

L, VI M, AN
7

L _11,,_\1/, ANZ

The flux ¢ 1producedincoil‘ A’ duetoacurrentofls ampereis
o Ll MM AN? ]

L

o = § —
. A 1 J \‘..
MM, AN,
dJ] ———

!
Supposeafractionofthis fluxi.e.K1 ¢ 1islinkedwithcoil‘B’ Similarly the

“N.N.
K = S (1)
/ S lMMA

flux ¢ 2produced in coil ‘B’due to I2amp. Is

Then 7 -



_ MM AN I,

Q,
o [
Supposeafractionofthis fluxi.e.Kz ¢ 2 islinkedwithcoil* A” Multiplying
lhen Af K-"‘- v N }‘.. "\.. ~‘\'| __________________________ (2)

r XML A

equation (1) & (2)
it m RNV
' ‘\[,‘!' A

w2 MM ANY | MM, AN,

/

[« K, =K, =K]
W =K-I1
v M.
g ,I.
:.)..
::v:\'-‘l M
\‘IAI.I;

Where‘K’isknownastheco-efficientofcoupling.
Co-efficientofcouplingisdefinedastheratioofmutualinductance between
two coils to the square root of their self- inductances.

InductancesInSeries(Additive):—

Fluxes are 1o the same durection

_——viv

Li=Co-efficientofself-inductanceoffirstcoil.
Lo=Co-efficientofself-inductanceofsecondcoil. EMF
induced in first coil due to self-inductance

dl
')L] = ['1 =0

dr
Mutuallyinducedemfinfirstcoil

[ L

¢



dl

e\f &= —\[ s
e dr
EMFinducedinsecondcoilduetoselfinduction
dl
e, =L —
- ©di

Mutuallyinducedemfinsecondcoil
dl
= —
: df
Totalinducedemf
E=eteptemitem

If*L’istheequivalentinductance,then

. r " -
-L.‘l:-Lliﬁ___\;ij.-Li‘.L__\ L
dt at dr T at dr
:—Lﬂrﬂl_’i.—i -21)
dr a '

InAiirtanraclnQarinc/CQiihetnartivin)-—

L

{Fluxes are opposse m direction)
LetM=Co-efficientofmutualinductance
Li=Co-efficientofself-inductanceoffirstcoil
L2-=Co-efficientofself-inductanceofsecondcoil Emf
induced in first coil due to self induction

dl
e, ==L, —
‘ dr
Mutuallyinducedemfinfirstcoil
e ( o dl ’ _ dl

! \ at dt



Emfinducedinsecondcoildueto self-induction

1
e, =—1L, —

. dt
Mutuallyinducedemfinsecondcoil
[ /N d
ey = —‘ —4\-{(( =M [

: \ di ) dt
Totalinducedemf

e=enteL.+em+em
Then

Ty By B g Wy
dr S ot it dr

¢ dal
.;--r'ﬁ:——.,—[f‘*[.:-:'vl') =>l=0+1,-2M
al il 2

Inr~|||r\fanr\nclnD?rn||o|-—>

8

I { (& » v
Lettwo inductancesofl;&L.,areconnectedinparallel

Lettheco-efficentofmutualinductancebetweenthemis M. |-
i1+i2

L AP SNRATD e R AR Jo9 -5 5 A T 1
4’] (J" U‘l’ ( ]
d.‘. . dl
g=f — 4 M —
L’ or ot
PRV
oy dr
=T di T -'ﬁ/.‘- I JI\ L AL ‘"l
ot dr v oy
) !
= (L, —M)=2=(L,— M )~4
! dr v
i 4 o, -Ma 2)
i (L MY di
al i u')l (/I_
dr  dr di
(/._ M) d(-_. d?_
(L, — M) dt ar
t’ . —.‘ (. . -
— 1_ L- { s | L R (_"

= o X 1._ - N ) dt



If*L’istheequivalentinductance

eLi-Lﬁ-u“
dt ar dt
dz di
e ¥ y_.
dr Ldr a
—-1{‘-”-7 {4)
dr dr |
LS L
Substituting the value of —3
i
g [ LM
4|

E1LN Ja
Equatlngequatlon(S)&(S)

\ B ]m [ (L,-M) {Jm

M) |a L\ NL-M) T |de

LM MY,
Q e lll’l |‘UJ

SL-MAL-M AL -LM+iM- UJ

L-M L Y
R s éh'“f
L-M L] L-M

:a-g-1w=lua-u1

LL-M

=>il=
L=L-2M

Whenmutualfieldassist.
Ll + L_, +2M

Whenmutualfieldopposes.




Exp.-01:
TwocoupledcolshaveselfinductancesL1=10x103HandL2=20x103H.The
coefficient of coupling (K) being 0.75 in the air, find voltage in the
secondcoilandthefluxoffirstcoilprovidedthesecondcoilshas500turns and
thecircuitcurrentisgivenbyii=2sin314.1A.
Solution:
M=KVL1L2
M=0.75V/10x10-3x20x10-3
2M=10.6x10-sH
Thevg_l;cageinducedinsecondcoilis

l
V2=/\/II
=10.6x103x2x314cos314dt.
Themagneticcircuitbeinglinear,

v Vg S00x(Kg)

! Iy

| M !_l}l'l‘-:Hl'l' < 1
P§=- s -x 2sin3 L4
SO0 K 00073

=566 %107 sin 314t

Exp.02
Findthetotalinductanceofthethreeseriesconnectedcoupledcoils.Where the
self and mutual inductances are
L1=1H,L2=2H,L3=5H
M12=0.5H,M23=1H,M13=1H
Solution:

La=L1+M12+M13

=1+20.5+1

=2.5H

Le=L2 +M23 +M12

=2+1+0.5

=3.5H

Lc=L3 +M23 +M13

=5+1+1

=7H

Totalinductancesare



Lea =La+Ls+Lc
=2.5+43.5+7
=13H(Ans)



CHAPTERS
CircuitElementsandanalysis

11 Voltage

Energy is required for the movement of charge from one point to another. Let W
Joules of energy be required to move positive charge Q columbs from a point a to
pointb in a circuit. We say thata voltage exists between the two points. The voltageV
between two points may be defined in terms of energy that would be required if a
charge were transferred from one point to the other. Thus, there can be a voltage
between two points even if no charge is actually moving from one to the other.

Voltage between a and b is given by

Wy o

Workedare(W)inJoules
Charge(Q)incolumbs

HenceElectricPotential(\V)=

Current:
An electric currentis the movement of electric charges along a definite path. In case of

a conductor the moving charges are electrons.

The unit of current is the ampere. The ampere is defined as that current which when
flowing in two infinitely long parallel conductors of negligible crosssection, situated 1meter
apart in Vacuum, produces between the conductors a force of 2 x 107'Newton per metre

length.

Power : Power is defined as the work done per unit time. If a field F newton acts for t

seconds through a distance dmetres alonga straightline, work done W = Fxd N.m. or J. The

power P, either generated or dissipated by the circuit element.

P:W;de

t t



Work
time

Power can also be written as Power =

_ Work  Charge_
Charge ~ Time

VoltagexCurrent

P=VxlIwatt.

Energy: Electric energy W is defined as the Power Consumed in a given time.Hence, if
currentl Aflowsinanelementoveratimeperiodtsecond,whenavoltageVvoltsisapplied across it,

the energy consumed is given by
W=Pxt=VxIxtJorwatt.second.

The unit of energy W isJoule(J) or watt. second.However, in practice, the unit of

energy is kilowatt. hour (Kwh)

1.2 Resistance: Accordingto Ohm's law potential difference (V) acrossthe ends of a
conductor is proportional to the current(l) flowing through the conductor at a constant

temperature. Mathematically Ohm's law is expressed as
ValorV=RxI

\Y : . .
orR= _WhereRistheproportionalityconstantandisdesignatedastheconductor
I

resistance and has the unit of Ohm(Q).

Conductance :Voltage is induced in a stationary conductor when placed in a varying

magnetic field. The induced voltage (e) is proportional to the time rate of change of

current, di/dt producing the magnetic field.

Thereforeeocdl _
dt

Ore = Ldl_



eandiarebothfunctionoftime. TheproportionalityconstantLiscalledinductance.

The Unit of inductance is Henery (H).

Capacitance : A capacitor is a Physical device, which when polarized by an electric
fieldby applying a suitable voltage across it, storesenergy in the form of a charge

separation.

Theabilityofthecapacitortostorechargeismeasuredintermsofcapacitance.

Capacitenceofa capacitorisdefinedasthecharge storedperVolt applied.

C:q:_Coqumb:Fa
v Volt

rad

1.3 ActiveandpassiveBranch:

A branch is said to be active when it contains one or more energy sources. A passive

branch does not contain an energy source.
Branch:Abranchisanelementofthe networkhavingonlytwoterminals.

Bilateralandunilateralelement:

A bilateral element conducts equally well in either direction. Resistors and inductors
are examples of bilateralelements. When the current voltage relations are different for
the two directions of current flow, the element is said to be unilateral. Diode is an

unilateral element.

Linear Elements: When the current and voltage relationship in an element can be

simulated by a linear equation either algebraic, differential or integral type, the

element is said to be linear element.

Non Linear Elements : When the current andvoltage relationship in an element can

not besimulated by a linear equation, the element is said to be non linear elements.

1.4 Kirchhoff'sVVoltage Law(KVL) :

ThealgebraicsumofVoltages(orvoltagedrops)inanyclosedpathorloopisZero.



ApplicationofKV Lwithseriesconnectedvoltagesource.
R,

M\

Fig. 1.1
V1+Vo—IR1-1R2=0
=V1+V2=I(R1+Ry)

V+V,

R+R,

ApplicationofKVLwhilevoltagesourcesare connectedinoppositepolarity.

Fig. 1.2
Vi-IR1-V2-IR2-IRs=0
> Vi-Vo=IR1+IR2+IRs
> Vi-Vo=I(Ri+IRz+IRs)



V-V,

> |l= ————=
R+R,+R;

Kirchaoff'sCurrentLaw(KCL):

Thealgebraicsumof currentsmeetingatajunctionormodeiszero.

Fig. 1.3

Considering five conductors, carrying currents 1, Iz, I3, lsand Ismeeting at a point O.
Assuming the incoming currents to be positive and outgoing currents negative.

|1+(-|2)+|3+(-|4)+|5:O I—
lo+ I3— 14+ 15=0

l1+13+15=l2+14

Thus above Law can also be stated as the sum of currents flowing towards any
junction in an electric circuit is equal to the sum of the currents flowing away from
that junction.

Voltage Division (Series Circuit)

Consideringavoltagesource (E)withresistorsRiandRzinseriesacrossit.
R,

MWV

E + /D

Fig. 1.4



- ER,

+R,
Voltage drop across Ri=l.R;= E.R,
R+R,
. E.R,
SimilarlyvoltagedropacrossR>=1.R>=
R+R,

Current Division:

Aparallelcircuitactsasacurrentdividerasthecurrentdividesinallbranchesina parallel

circuit.

Fig. 1.5

Fig.shownthecurrentlhasbeendividedintol:andlzintwoparallelbrancheswithresistances Riand

Rowhile V is the voltage drop across Riand Ra.

\
lh=— and .= —
1 2

LetR = Totalresistance of the circuit.

1
Hence _== Ll_
R R R
> R= RiR,

R+R,



But=V =11R1=I2R>

(RR,)
> |=|1R1| |
\R, +R;)
> I — Il(Rl+R2)
R,
Therefore = IR,
R+R,

Similarlyitcanbederivedthat

IR,
R+R,

l=




NETWORKANALYSIS
Differenttermsaredefined below:

1. Circuit:Acircuitisaclosedconductingpaththroughwhichanelectriccurrenteither
flowor is intended flow

2. Network: Acombinationofvariouselectricelements,connectedinany manner.
Whatsoever, is called an electric network

3. Node:itisanequipotentialpointatwhichtwo ormore circuitelements are joined.
4. Junction:it isthat point ofa network wherethree or morecircuit elements are joined.
5. Branch:itisapartofanetworkwhichliesbetweenjunctionpoints.

6. Loop:lt is a closedpath in a circuit in which no element or node is accounted more than
once.

7. Mesh:Itisaloopthatcontainsnootherloopwithinit.

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. ofi) circuit elements ii)
nodes iii) junction points iv) branches and v) meshes.

Rs
c d
Ra Re
p
R: Vs Rs
A e
Vi | R2 R7

K 0 f

R3 RQ V2



Solution:i) no. of circuit elements= 12 (9 resistors + 3 voltage sources)
ii) no. of nodes =10 (a, b, ¢, d, e, f, g, h, k, p)
iii) no. of junction points =3 (b, e, h)

iv) no.ofbranches=5(bcde,be,bh,befgh,bakh)

V) no.of meshes = 3 (abhk, bcde, befh)

3.2 MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding solutions
foranetwork.Thesuitabilityofeithermeshornodalanalysistoaparticularproblemdepends mainly
on the number of voltage sources or current sources .If a network has a large number of
voltage sources, it is useful to use mesh analysis; as this analysis requires that all the sources
in a circuit be voltage sources. Therefore, if there are any current sources in a circuit they are
to be converted into equivalent voltage sources,if, onthe other hand, the network has more
current sources,nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits meshanalysis
is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without
crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover.

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a
planar circuit which looks like a non-planar circuit. It has already been discussed that a loopis
a closed path. A mesh is defined as a loop which does not contain anyotherloopswithinit. To
apply mesh analysis, our first step is to check whether the circuit is planar or not and the
second is to select mesh currents. Finally, writing Kirchhoff*s voltage law equations in terms
of unknowns and solving them leads to the final solution.

@) (b) o) %

~7
Figure 3.2

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the
network.Letusassumeloopcurrentsliandl,withdirectionsasindicatedinthefigure.



Considering the loop abefa alone, we observe that current I1is passing through Ryand (1:-12) is
passing through R2 By applying Kirchhoff’s voltage law, we can write

Vs =11R1+Rz(l1-12) (3.1)
R1 Rs
a ‘/\/\/\/ b /\/\/\/ T
Vs RZ
R4
G) I1 I
f e d

Figure 3.3

Similarly, if we consider the second mesh bcdeb, the current l.is passing through
Rsand Rsand (I>— 11) is passing through R2 By applying Kirchhoff’s voltage law around the
second mesh, we have

Ro(I2-11)+Rsl2+Ral2=0 (3.2)

Byrearrangingtheaboveequations,thecorrespondingmeshcurrentequationsare
l1(R1+R2) - [2R2=Vs,

-11R2+(R2+R3+R4)12=0 (3.3)

By solving the above equations, we can find the currents liand 12 If we observe
Fig.3.3, the circuit consists of five branches and four nodes, including the reference node.The
number of mesh currents is equal to the number of mesh equations.

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of
mesh current would be 5-(4-1)=2.



IngeneralwehaveBnumberofbranchesandNnumberofnodesincludingthe reference node
than number of linearly independent mesh equations M=B-(N-1).

Example3.2 Writethe mesh —\\V\\
5Q 10Q

current equations in the circuit shown 10V T 2Q

50v —|—

infig 3.4 anddetermine the currents.

Figure 3.4

Solution: Assume two mesh currents in the direction as indicated in fig.
3.5.Themeshcurrentequationsare

I2 10Q

“—  [(s50v

Figure 3.5
515+2(11-12)=10
101,+2(1-11)+50=0 (3.4)
Wecanrearrangetheaboveequationsas 711-
212=10
-211+121,=-50 (3.5)

Bysolvingtheaboveequations,wehavel1=0.25A,andl,= -4.125



Here the current in the second mesh I,is negative; that is the actual current 1>flows opposite to
the assumed direction of current in the circuit of fig .3.5.

Example3.3Determinethemeshcurrentliinthecircuitshowninfig.3.6.

Figure 3.6

Solution:From the circuit, we can from the following three mesh equations

101145(11+12)+3(11-13)=50 (3.6)
212+5(12+11)+1(12+13)=10 (3.7)
3(Is-11)+1(13+12)=-5 (3.8)

Rearrangingtheaboveequationsweget

1811+51,-315=50 (3.9)
51;+81,+15=10 (3.10)
-311+lp+415=-5 (3.11)

Accordingto theCramer’s rule



[50 5 -3]

10 8 1~|
-5 1 4l1175
1= F

18 5 -3' 356

5 8 1]

{—3 14 ]

Orly= 3.3ASimilarly,

[18 50 -3]
5 10 1~|
'T| -3 5 4135
218 5 3! 356
5 8 1
B
Orl,=-0.997A
[18 5 50]
5 8 10||
= 1-3 1 -5[5%
$ |18 5 —3'| 356
5 8 1]
-3 1 4| ]
Orls=1.47A

= 11=3.3A,12=-0.997A,15=1.47A

(3.12)

(3.13)

3.3 MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be writtenby
inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

The loop equation are 11R1+ R2(l1-12)

R1

Figure 3.7



Ro(l2-11)+12R3=-V> 3.14
Ral3+Rsl3=V> 3.15

Reorderingtheaboveequations,wehave

(R1+R2)11-R2l2=V1 3.16
-Roli+(R2+R3)12=-V> 3.17
(R4+Rs)13=V> 3.18

Thegeneralmeshequationsforthreemeshresistivenetworkcanbewrittenas

R1111+R121>+R1313= V, 3.19
1R21114+R221>1R2313=V) 3.20
+R31111R3212+R33l13=V, 3.21

Bycomparingtheequations3.16,3.17and3.18withequations3.19,3.20and3.21 respectively, the
following observations can be taken into account.

1. The self-resistancein each mesh

2. Themutualresistancesbetweenallpairsofmeshesand

3. Thealgebraic sumof thevoltagesineachmesh.

The self-resistance of loop 1, Ru1=R1+Ry>, is the sum of the resistances through which
l1passes.

The mutual resistance of loop 1, Ri2= -Ro, is the sum of the resistances common to loop
currents liand I, If the directions ofthe currents passing through the common resistances are
the same, the mutual resistance will have a positive sign; and if the directions of the currents
passing through the common resistance are opposite then the mutual resistance will have a
negative sign.

V,=V1is the voltage which drives the loop 1. Here the positive sign is used if
the direction of the currents is the same as the direction of the source. If the current
direction is opposite to the direction of the source, then the negative sign is used.

Similarly R22=R>+R3and Rs3=Rs+Rsare the self-resistances of loops 2 and 3
respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31=0, R3,=0 are the
sums of the resistances common to the mesh currents indicated in their subscripts.

Vb=-V2, V=V arethesumofthevoltagesdrivingtheirrespectiveloops.



Example3.4writethemeshequationforthecircuitshowninfig.3.8

% 50
-\
10V- C) I3 4Q
6Q
4—
| +O—ZOV |
Figure3.8

Solution: thegeneralequationforthreemeshequationare

Ri111£R1212+R1313=Va (3.22)
+R2111+R22121R2313=Vh (3.23)
*Rs111+R3212+R33l3=Ve (3.24)

Considerequation3.22
Rii=selfresistanceof loop 1=(1Q+3Q+6Q)=10Q
Ri>=themutual resistancecommon toloop land loop2 =-3 Q
Herethenegativesignindicatesthatthecurrentsareinoppositedirection. Ris=
the mutual resistance common to loop 1 & 3= -6 Q

a=*10 V,the voltagethe driving theloop 1.
Herehepositivesignindicatestheloopcurrentlsisinthesamedirectionasthe source element.

Thereforeequation3.22canbewrittenas



1011-312-615=10V (3.25)
ConsiderEq.3.23
Ro1=themutual resistancecommon toloop land loop2 =-3 Q

R2o= self resistance of loop 2=(3Q+ 2 Q +5 Q) =10 Q
R23=0,thereisnocommonresistancebetweenloop2and3. Vp= -
5V, the voltage driving the loop 2.
ThereforeEq. 3.23 canbe written as
-311+101,=-5V (3.26)
ConsiderEq.3.24
Rs1=themutualresistancecommontolooplandloop3=-6Q R3,= the
mutual resistance common to loop 3 and loop 2 = 0 Ras= self
resistance of loop 3=(6Q2+ 4 Q) =10 Q
V=the algebraicsumofthevoltagedrivingloop3
=(5V+20V)=25V (3.27)
Therefore,Eq3.24canbewrittenas-61:+1013=25V
-611-312-613=10V
-311+101,=-5V
-61:+1013=25V

3.4 SUPERMESHANALYSIS

Suppose any of the branches in the network has a current source, then it is slightly difficult to
apply mesh analysis straight forward because first we should assume an unknown voltage
across the current source, writing mesh equation as before, and then relate the source current
totheassignedmeshcurrents. Thisisgenerallyadifficultapproach.Onwaytoovercomethis
difficulty is by applying the supermesh technique. Here we have to choose the kind of
supermesh. A supermesh is constituted by two adjacent loops that have a common current
source. As an example, consider the network shown in the figure 3.9.

R,

+ V I P Rs3 I3 R4
1 | ® 2 3




Herethecurrentsourcelisinthecommonboundaryforthetwomeshesland2.Thiscurrent source
creates a supermesh, which is nothing but a combination of meshes 1 and 2.

Rili+ Ra(l2-13)=V
Or Ril1+Rsl2-Ral=V
Consideringmesh3,wehave
Rs(l3-12)+ Ral3=0

Finally the current | fromcurrent source is equal to the difference between two mesh currents
le.

l1-12=I

wehavethusformedthreemeshequationswhichwecansolveforthethreeunknown currents in the
network.

Example3.5.Determinethe currentin the5Q resistorinthenetworkgiveninFig.3.10

d e
2Q
f
50 v ( 1Q
Figure 3.10
Solution:- Fromthe firstmesh, i.e.abcda, we have
50=10(11-12)+5(I1-13)
Or15l:-10I,-513=50 (3.28)

Fromthe second and third meshes.we can form a super mesh
10(12-11)+212+13+5(13-11)=0

Or-1511+1212+613=0 (3.29)



ThecurrentsourceisequaltothedifferencebetweenllandllImeshcurrents
i.e.l2-13=2A (3.30)
Solving3.28.,3.29 and 3.30. we have
11=19.99A,1,=17.33A,andl3=15.33A
Thecurrentinthe5Qresistor=I1-13
=19.99-15.33=4.66A
Thecurrentinthe5Qresistoris4.66A.

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine
thecurrents, 11 1,and Is.

10V
+
h G
I2 I3
A
(Droa 3Q 1Q
< «— 20
I I I
Figure 3.11

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and
thefirst mesh is ignored. Kirchhoff's voltage law is applied only for second and third meshes .

Fromthesecondmesh,wehave
3(I2-11)+2(12-13)+10 =0

or -311451,-215=-10 (3.31)

Fromthethirdmesh,wehave I3+
2 (|3-|2) =10

or -21,+315=10 (3.32)



From the first mesh, 11=10A (3.33)
From the abovethree equations, we get

1.=10A, 1,=7.27, 13=8.18A

3.5 NODALANALYSIS

In the chapter I we discussed simple circuits containing only two nodes, including the
reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum
node, then it is possible to write N -1nodal equations by assuming N-1 node voltages. Forexample,al0
node circuit requires nine unknown voltages and nine equations. Each node in a circuit can be
assigned a number or a letter. The node voltage is the voltage of a given node with respect to
oneparticularnode,calledthereference node,whichweassumeatzeropotential.Inthecircuitshown in fig.
3.12, node 3 is assumed as theReference node. The voltage at node 1 is the voltage at thatnode with
respect to node 3. Similarly, the voltage at node 2 is the voltage at that node with respect to node 3.
Applying Kirchhoff’s current law at node 1, the current entering is the current leaving (See Fig.3.13)

1 2
R2 R4
A
I1 CD % R3 Rs

Figure3.12

Rz

% 2
" ®
Figure3.13

1= V1i/R1+ (V1-V2)/R2



WhereViandV2arethevoltagesatnodeland2,respectively.Similarly,atnode
2.thecurrententeringisequaltothecurrentleavingasshowninfig. 3.14

R R4

Figure 3.14

(V2-V1)/R2+V2/R3+V2/(R4+Rs)=0
Rearrangingtheaboveequations,wehave
V1[1/R1+1/R2]-V2(1/R2)= 1
-V1(1/R2)+V2[1/R2+1/R3+1/(R4+Rs)]=0

Fromtheaboveequationswecanfindthevoltagesateachnode.
Example3.7Determine thevoltages at each nodefor the circuitshown infig 3.15

3Q

10Q J\/\/\/\ﬁ 20
VWSAVWS

10v 5Q S5A 1Q 6€2

Figure 3.15

Solution: Atnodel,assumingthatallcurrentsareleaving,wehave (V1-
10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0
Or  Vi[1/10+1/3+1/5 +1/3 ]-V[1/3+1/3]=1
0.96V1-0.66V2=1 (3.36)
Atnode2,assumingthatallcurrentsareleavingexceptthecurrentfromcurrentsource,we have
(V2-V)I3+(V2-V1)/3+(V2-V3)/2=5
-V1[2/3]+V[1/3+1/3+1/2]-V5(1/2)=5
-0.66V1+1.16V,-0.5V3=5 (3.37)



Atnode3assumingallcurrentsareleaving,wehave (V-

V2)/2

+V3/1 + V3/6 =0

-0.5V>+1.66V3=0

ApplyingCramer’sruleweget

1 066 O 1
116 -05
:' 0 05 166 = _g06
' 1096 -066 0 } 0.887
066 116 -05]
0 05 1.66|J
Similarly,
[ 09% 1 0
066 5 -05
i 0 0 166 1906 =102
VZT =
0.96 066 0 0.887
066 116 -05]
0 -05 1.66|J
096 —066 1
| -0ps 116 5
- 05 0 | 273 =307
* 1096 -066 0 0.887
066 116 -05]
0 -05 1.66|J

(3.38)

3.6 NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written
byinspection without going through the detailed steps. Consider a three node resistive network, including the reference node, as shown in

fig3.16

R1 Rs3

Rs

Figure 3.16



Infig.3.16thepointsaandbaretheactualnodesandcisthereferencenode. Now

consider the nodes a and b separately as shown in fig 3.17(a) and (b)

R1Va Rs R3 Vb Rs

(@) (b)

Figure 3.17 -

Infig3.17(a),accordingtoKirchhoff’scurrentlawwehave
[1+12+13=0
(Va-V1)/R1+Va/Ro+(Va-Vp)/R3=0 (3.39)
Infig3.17(b),ifweapplyKirchhoff’scurrentlaw
l4+15=I3
2 (Vb-Va)/R3+Vp/R4+(Vp-V2)/Rs=0 (3.40)
Rearrangingtheaboveequationsweget
(1/R1+1/R2+1/R3)Va-(1/R3)Vb=(1/R1) V1 (3.41)
(-1/R3)Va+(1/R3+1/R4+1/Rs)Vb=V2/Rs (3.42)
In general, the above equation can be written as
GaaVatGaVp=l1 (3.43)
GpaVatGobVo=I2 (3.44)

By comparing Egs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node
a, Gaa=(1/R1+ 1/R>+ 1/R3) is the sum of the conductances connected to node a. Similarly,
Gob= (1/R3+ 1/R4+1/Rs) is the sum of the conductances connected to node b. Gay=(-1/R3) is
the sum of the mutual conductances connected to node a and node b. Here all the mutual
conductances have negative signs. Similarly, Gna= (-1/R3) is also a mutual conductance
connected between nodes b and a. liand l.are the sum of the source currents at node a and
node b, respectively. The current which drives into the node has positive sign, while the
current that drives away from the node has negative sign.



Example3.8forthecircuitshowninthefigure3.18writethenodeequationsbythe inspection
method.

4Q

Fig 3.18
Solution:-
Thegeneralequationsare
GaaVatGabVo=I1 (3.45)
GpaVatGppVo=I2 (3.46)

Consider equation3.45

Gaa=(1+1/2+1/3)mho.Theselfconductanceatnodeaisthesumoftheconductances connected to
node a.

Gob=(1/6+1/5+1/3)mhotheselfconductanceatnodebisthesumofconductances connected to node
b.

Gab=-(1/3)mho,themutualconductancesbetweennodesaandbisthesumofthe conductances
connected between node a and b.

SimilarlyGpa=-(1/3),thesumofthemutualconductancesbetweennodesbanda. 1:=10/1 =10

A, the source current at node a,



1,=(2/5+5/6)=1.23Athesourcecurrentatnodeb. Therefore, the
nodal equations are
1.83V2-0.33Vp=10 (3.47)

-0.33V,+0.7V,=1.23 (3.48)
3.7 SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, thenitisslightlydifficult to
apply nodal analysis. One way to overcome this difficulty is to apply the
supernodetechnique.In this method, the two adjacent nodes that are connected by a voltage
source are reduced to a single node and then the equations are formed by applying
Kirchhoff’s current law as usual. This is explained with the help of fig. 3.19

Vi Vs . Vs
W IE O 3]
R> Vx
I GD R1 R3 R4 Rs
— Vv
i
FI1G3.19

Itisclearfromthefig.3.19,thatnode4isthereferencenode. ApplyingKirchhoff’scurrent law at
node 1, we get

|:(V1/R1)+(V1-Vz)/R2

Due to the presence of voltage source V,in between nodes 2 and 3, it is slightly
difficult to find out the current. The supernode technique can be conveniently applied in this
case.

Accordingly,wecanwritethecombinedequationfornodes2and3asunder.



(V2-V1)/R2+V2/R3+(V3-Vy)/Rat+V3/R5=0
Theotherequationis

V2-V3=Vy

Fromthe above three equations, wecanfindthethreeunknownvoltages.

Example3.9Determinethecurrentinthe5Qresistorforthecircuitshowninfig.

3.20
2Q
V1 V> + = V3
20V
1Q 5Q
GgOA3Q
10V
Solution.Atnodel
10=V1/3+(V1-V2)/2
Or  Vi[1/3+1/2]-(V2/2)-10=0
0.83V1-0.5V,-10=0 (3.49)

Atnode2and3,thesupernodeequationis
(V2-V1)/2+V5/1+(V3-10)/5+V3/2=0
Or  —V1/2+V,[(1/2)+1]+V3[1/5+1/2]=2
Or -0.5V1+1.5V,+0.7V3-2=0
Thevoltagebetweennodes2and3isgivenby

Vz-V3:20

(2.50)

(3.51)

2Q

fig.3.20



Chapter-
0ANETWORKTHEOR

INTRODUCTION M

This chapter introduces a number of theorems that have application throughout the field of
electricity and electronics. Not only can they be used to solve networks such as encountered
in the previous chapter, but they also provide an opportunity to determine the impact of a
particular source or element on the response of the entire system. In most cases, the network
to be analyzed and the mathematics required to find the solution are simplified. All of the
theorems appear again in the analysis of ac networks. In fact, the application of each theorem
to ac networks is very similar in content to that found in this chapter.

The first theorem to be introduced is the superposition theorem, followed by Thévenin’s
theorem, Norton’s theorem, and the maximum power transfer theorem. The chapterconcludes
with a brief introduction to Millman’s theorem and the substitution and reciprocity theorems.

SUPERPOSITIONTHEOREM

The superposition theorem states that “The current through, or voltage across, any
element of a network is equal to the algebraic sum of the currents or voltages produced
independently by each source.”

In other words, this theorem allows us to find a solution for a current or voltage using
only one source at a time. Once we have the solution for each source, we can combine the
results to obtain the total solution.The termalgebraic appears in the abovetheoremstatement
because the currents resulting from the sources of the network can have different directions,
just as the resulting voltages can have opposite polarities.

If we are to consider the effects of each source, the other sources obviously must be
removed. Setting a voltage source to zero volts is like placing a short circuit across its
terminals. Therefore, when removing a voltage source from a network schematic, replace it
with a direct connection (short circuit) of zero ohms. Any internal resistance associated with
the source must remain in the network.

Setting a current source to zero amperes is like replacing it with an open circuit. Therefore,
when removing a current source from a network schematic, replace it by an open circuit of
infinite ohms. Any internal resistance associated with the source must remain in the network.

Theabovestatementsareillustratedin Fig.

o

-

A
—a
-
-

= 3
-

FIG. 9.1
Removing a yoltage souwrce and a current source to permil the application

of the superposition thearem




EXAMPLE9.1
a.Usingthesuperpositiontheorem,determinethecurrent through
resistor R2 for the network in Fig. 9.2.

Solutions:

In order to determine the effect of the 36 V voltage source,the
current source must be replaced by an open-circuit equivalent
as shown in Fig. 9.3. The result is a simple series circuit with
a current equal to

6V 3V

T ROR R 120+60 180

=2A

Examining the effect of the 9 A current source requires replacing
the 36 V voltage source by a short-circuit equivalent as shown in
Fig.9.4.TheresultisaparallelcombinationofresistorsR1and2.
Applying the current divider rule results in

< R (12 Q)9 A)

~ — —_ —_ ) /

R, + R, 120 + 6 Q

Since the contribution to current 12 has the same direction for
each source, as shown in Fig. 9.5, the total solution for current 12
is the sum of the currents established by the two sources. That is,

sy =B+ 15=2A+6A=8A

EXAMPLES9.2Usingthesuperpositiontheorem,determinethe

Network tobe analyzed i Fvaomple 8.1 ¢

saperposior Mo,

v
—AA——t-

current through the 12 Q resistors in Fig. 9.8. Note that this is a two-source network of the
type examined in the previous chapter when we applied branch-current analysis and mesh

analysis.

Using the sapecposition themvmn Jo delerminge ti

crerven! Seeogegh M 12 82 oovastor d X xample 9.2

Solution: Considering the effects of the 54 V source requires replacing the 48 V source by a
short-circuit equivalent as shown in Fig. 9.9. The result is that the 12 Q and 4 Q resistors are

in parallel. The total resistance seen by the source is therefore,

By =R, +R:AR; =240 + 1211140 =244 + 340 =271}

| ) -

and the source current is

ng

the
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FIG. 9.9

Uxing the M rvitlon theorya tor detenmine the effect of the 34 Vvoltaee source o current I in Mg o8

Using the current divider rule resualts in the contribution 10 §, due o the
54 V source:

Rl (AON2A)

- == = 05A
R: +Ry, 40+ 120
If we now replace the 54 V source by a shoet-circuit equivalent, the
network in Fig. 9.10 resulis. The result is a parallel connection for the
12 £ and 24 £} resistors
Thesefore, the total resistance seen by the 48 V source is

Ry =R+ Ba|Ri =402+ 120124 =40+ 80 =120

\
\ 54 V bagiery reploced
by short Clecwit

AG. 910
Using the supespaiizion theorem to determine the effect of the 48 V yoltage source on curvent 1 in Fig. 9.8

and the soarce curreat is
£, 8V l)‘;r').ﬁ.—\
= — — =4 A

=== "=
R T A

Applying the cureent divider rile resolis in ﬁ'.gm; - R«§!.‘!:
o= Ril) (244 A) 167 A
TR YR AHMO+1R2O 7T

P.=28TA
It 1s now tmpotant 1o realize that current [y doe to gach source has 4 f
different direclion, as shown in Fig. 9.1 1. The net current therefore is the

difference of the two and in the direction of the Jarger as follows

FIG. 9.11
Using the results of Figs. 4.9 and Y.10 10 determine
’_x =3 L. - I: =267 A DSA =217A oureemt ,: for the network in {'"f{- (X




EXAMPLE9.3Usingthesuperpositiontheorem,determinecurrentl1forthenetworkin

FIG. 8.12
Two-seniree nehwork o e analveed AT T

siperposition theorem in £ saniple Y. 1

Solution:Sincetwosourcesarepresent,therearetwonetworks to be

analyzed. First let us determine the effects of the voltage source

by setting the current source to zero amperes as shown in Fig.

9.13. Note that the resulting current is defined as I1’ because it

is the current through resistor R1 due to the voltage source

only. -
Due to the open circuit, resistor R1 is in series (and, in fact, in FIG. 9.13
parallel) with the voltage source E. The voltage across the — Pekermimig the effoctufthe 30
resistor is the applied voltage, and current 11" is determined by cHestlymRg:
Vi E 30V

| =E—=—="—=15A
fi R, R 60

Now for the contribution due to the current source.
Setting the voltage source to zero volts results in the
network in Fig. 9.14, this presents us with an
interesting situation. The current source has been
replaced with a short-circuit equivalent that is
directly across the current source and resistor R1.
Since the source current takes the path of least
resistance, it

chooses the zero ohm path of the inserted short-
circuitequivalent,andthecurrentthroughR liszero
amperes. This is clearly demonstrated by an  fetermming the effect of the A cureent source on
application of the current divider rule as follows: the curreai Iy tn Fig. 9.12.

RJ (oM
+R 0Q+60

s
I =

0A
R

5C
Sinee /{ and 7Y have the same defined direction in Figs, 913 and 9.1 4,

the toud current s delined by
Lh=1 ~I{=5A +0A =§A

Although this has been an excellem miroduction o the application of
the superposition theorcin, it should be nmediately clear in Fig, 9,12
that the voltage source 1s 1n parallel with the current source and load
resistor B, s0 the soluge aeross esch must be 300V, The result s that [,
must be determined solely by

3y

62

SA




EXAMPLE 9.4 Lising the principle of supesposition, find the curment /,

through the 12 K resistor in Fig. 9.15.

Solution: Consider the cffect of the 6 mA current source (Fig. 9.16),

L" mA b mA

,

/ o, e
R I ";Izk';- 1241

9

+
k. I

y
I-

N/

Lfs
M,gr,m J-:;§ 12 k0

Ry = 6kil

y J
_—““

P_.éu kil

FIG. 9.16

- 5551

] Fxiarple 9.4

GmA T :

I".?:J RNy
——re— 1
I

[ @ e e . C‘)

iy §IJL:: K, § 350 1546

FG. 9,16

The effect of the caurvent yoverce I o tiwe currenr 1y

The currcat dividor rule gives
‘DB R
R +R 6K 4

(EXKON6 mA)

— = 2 mA
2k -

Consiclering the effect of the 9 V voliage scurce (Fig. 9.17) gives
oV
6 kSl -

E = (L5 mA

5=
I=x

Since 75 and 7% have the same direction through Ra, the desired cur-
rent 15 the sum of the two!

[ 12 k§2

=1
2 ma
2.5mA

I

| R

6 k2 12 kS

Qv
Al
f

14 k4)

Ry .

Ry R, 15 kst

EXAMPLE 9.5 Fund the curreat theough the 2 €1 resstor of 1he net-
work 10 Fig, 9008, The presence of theee sources results i theee dffemnl
networks to be ansdvzed.

Solution: Cousider the effect of the 12 V sourge (Fig, 9.10)

i" -n_éx

& 1
/) I
J

FIG. 918

Lanyie 9.5, &)
AV
i

1
3

FIG. 9.13
Thw effect of Ey ow 1ix

I
ie

current |,




‘tr.

Consider the effect of the 6 V source (Fig, 9.20):

! ~ . . [1_~ 6V 6V
]' = — =

- R R 20 +40 68

FIG. 9.20 Consider the effoct of the 3 A source (Fig. 9.21): Applying the current
M effect of By on the curvent J, divider rule gives
(4 013 A) 12 A

= = =2A
20 + 4 £} &

| ! v
L . : The total current theough the 2 € resistor appears in Fig. 9.22_ and
i SR, ( % ) ;
211 ' / 5A
T, J e Hodim Upponss dxvtdm
! 'L :-.',l.';.n/ IR ETRAL
— .

A=Y PS4
~1A+2A-2A=1A

FIG. 3.21

The effect of T on the carrent 4.

9.3 THEVENIN’STHEOREM

The next theorem to be introduced, Thévenin’s theorem, is probably one of the most
interesting in that it permits the reduction of complex networks to a simpler form for analysis
and design.

In general, the theoremcan be used to do the following:

 Analyzenetworks withsources that arenot inseries or parallel.

* Reduce the number of components required to establish the same characteristics at the
output terminals.

* Investigate the effect of changing a particular component

on the behaviour of a network without having to analyze the M

entire network after each change. Ry

Allthreeareasofapplicationaredemonstratedintheexamples to -_—+- P’
)

follow. —
Thévenin’stheoremstatesthefollowing:

Anytwo-terminaldcnetworkcanbereplacedbyan equivalent
circuit =
consisting solely of a voltage source and a series resistor as

shown in FIG. 9.23

Fig.9.23. Ry S Song
ThetheoremwasdevelopedbyCommandantLeon-Charles Thévenin equivalent circuit.

Thévenin in 1883 as described in Fig. 9.24.

To demonstrate the power of the theorem, consider the

fairly complex network of Fig. 9.25(a) with its two sources and
series-parallel connections.
The theorem states that the entire network inside the blue shaded
area can be replaced by one voltage source and one resistor as
shown in Fig. 9.25(b). If the replacement is done properly, the
voltage across, and the current through, the resistor RL will be the
sameforeachnetwork.ThevalueofRLcanbechangedtoany

FIG. .24
Leown-Chaeles Thé vesin.
Connesy of thy Biblicthigue Eoole
Polyiedisique, Pasia, Fraoce,




value, and the voltage, current, or power to the load resistor is the same for each
configuration.

Now,thisisaverypowerfulstatement—onethatisverifiedintheexamples tofollow.

The question then is, How can you determine the proper value of Thévenin voltage and
resistance?Ingeneral,findingtheThévenin resistancevalueisquitestraightforward.Finding the
Thévenin voltage can be more of a challenge and, in fact, may require using the superposition
theorem.

Fortunately, there is a series of steps that will lead to the proper value of each parameter.
Although a few of the steps may seem trivial at first, they can become quite important when
the network becomes complex.

Thévenin’s Theorem Procedure

Preliminary:

1. Remove that portion of the network where the Thévenin equivalent circuit is found. In
Fig. 9.25(a), this requires that the load resistor RL be temporarily removed from the
network.

2. Mark the terminals of the remaining two-terminal network. (The importance of this step
will become obvious as we progress through some complex networks.) RTh:

3. Calculate RTh by first setting all sources to zero (voltage sources are replaced by short
circuits and current sources by open circuits) and then finding the resultant resistance
between the two marked terminals. (If the internal resistance of the voltage and/or current
sources is included in the original network, it must remain when the sources are set to
zero.) ETh:

4. Calculate ETh by first returning all sources to their original position and finding the
open-circuit voltage between the marked terminals. (This step is invariably the one that
causes most confusion and errors. In all cases, keep in mind that it is the open-circuit
potential between the two terminals marked in step 2.)Conclusion:

5. Draw the Thévenin equivalent circuit with the portion of the circuit previously removed
replaced between the terminals of the equivalent circuit. This step is indicated by the
placement of the resistor RL between the terminals of the Thévenin equivalent circuit as
shown in Fig. 9.25(b).

FIG.9.26

Nubarizatng the hiévenin -'»,‘u.‘l'u‘;‘n" carcad for onpfer etk

EXAMPLE 9.6 Find the Thévenin equivalent circuit for the network in
the shaded area of the network in Fig. 9.26. Then find the current through
R; for values of 2 €, 10 €2, and 100 ().




Solution:

Stepx 1 and 2- These produce the network in Fig. 927 Note that the load
resistor By has been removed and the two “Bolding™ terminals have been
defued as o and .

Siep 30 Replacing the voltage source &) with a shoct-curcuait equivalent
viclds the network in Fig. 9. 28(a), where

R, IR

FIG. .20
erenmining Ry for the nerwork in Fig, ©.27, FIG 927
Mo e e 2 ety of Ineedecnion
The importance of the two marked torminals now begins o surface
They are the two ermunals across which the Thévenin resistance is

i e whew apydving
Thivemane's thearime
mueasured, Tt is no loagor the total resistance ax seen by the source, os
determined o the mujority of problems of Chapier 7. It some ditficulty
develops when deternmining Ky wiath regard 1o whether the resistive
elements are in serics or parallel. consider recalling that the ohmmeter
sends out a nckle current Into a résistuve combanetion und senses the

level of the resulting voltage to establish the measured resistancelevel.
In Fig. 9.28(b), the trickle current of the ohmmeter approaches
thenetworkthroughterminala,andwhenitreachesthejunctionofR1 ~ and
R2, it splits as shown. The fact that the trickle current splits and then

P, 0
Detroinnng Loy G0 e artanil s Fig 077

recombines at the lower node reveals that the resistors are in parallel v

as far as the ohmmeter reading is concerned. In essence, the path of
the sensing current of the ohmmeter has revealed how the resistors are
connected to the two terminals of interest and how the Thévenin
resistance should be determined. Remember this as you work through
the various examples in this section.

Step 4: Replace the voltage source (Fig. 9.29). For this case, the
opencircuitvoltage ETh is the same as the voltage drop across the 6 Q
resistor.

AN —
‘0

v
P40, 8%
Mewaring B A e sirwanl s Figp 027

Al

Fa=20

da =tV

Applyingthevoltagedividerrulegives

54V
— =6V

En =g vk _6A+30" 9

na.sn
Swbawienry twr Thevenin opaimalent o Ao ihe
sctwerd cxteread o B e Fig 9.2¢

It is panticularly important 10 recognize that E,y is the open-circuil
potential between points a and H, Remember that an open clecuit can
Bave any voltage across 1L but the current must be zoro. In fact. the cur-
rent thr'ough any element in series with the open circuit must be zero
aiso, The use of a voltmeter 1o measure Ky, appears in Fig, 9,30 Note
that it is placed directly across the resistor R, since £, and Vi are in
paralicl .

Step 5:{Fig. 9:31):

»

6V =
N o S~

210 + 108

a6V
e OMEA
20 + 1000

R, = 104):

R, = 100 ():
If Thévenin's theorem were unavailable, cach change in R, would

require that the entire network In Fig 926 bo eexamined to find the
new value of 8.




EXAMPLE 9.7 Find the Thévenin equivalent circuit for the network in the shaded area

ofthe network in Fig. 9.32.

Solution:

Stepsland2:SeeFig.9.33.

Step 3: See Fig. 9.34. The current source has been replaced with an open-circuit equivalent
and the resistance determined between terminals a and b.

In this case, an ohmmeter connected between terminals a and b sends out a sensing current
that flows directly through R1 and R2 (at the same level). The result is that R1 and R2 are in
series and the Thévenin resistance is the sum of the two,

RI" = RI -+ R__4!! -+ 2!2 = 6!)

Ry

214

FIG. 9.33
FIG. 9.32 Establishing the terminals of particular
T B interest for the network in Fig. 9,52,
Lxampie 9.7.

(3

Wy "

241 ‘

|
ng “-— ;-a;‘.@
|

o _L

FIG. 9.34 FIG. 935 FIG. 9.36
g fiti

Determining K for the netwent: Dels [‘.'.')‘H"".,'.‘ :
"

*the network 'S'A'!"..'.:‘.Ifh!,'. the Tievenin ¢ ravelent cireswil ix the

in Fip. 9.33 n Fig. 933 metwork exteomd 1 the: rexisor Ryin Fig 9,32

Step 4: See Fig. 9.35. In this case, since an open circuit exists between the two marked
terminals, the current is zero between these terminals and through the 2Q resistor. Thevoltage
drop across R2 is, therefore,
V2=12R2=(0)R2=0V

and ETh=V1=11R1 =IR1=(12A)(4_)=48V
Step 5: SeeFig.9.36. .
EXAMPLE 9.8 Find the Thévenin
equivalent circuit for the network in
theshadedareaofthenetworkinFig. !
9.37.Noteinthisexamplethatthereis no ko0
need for the section of the network to
be preserved to be at the “end” of the
configuration.

FIG. 9.37




Solution:
Stepsland2:SeeFig.9.38

FIG, 9.38

Fdentifving the reveminals of particelar interest for the setwork in Fig, 9.27.

Cireun reden:

Lo

-

7, ;\v = R, §

“Short circunted T »

e

v e e
—
—

Ry < 00 H21 = DL}

-
———
=

FG. 9.39

Detevmining Ry for the anetwork in Fig. 938

Step 3: See Fig. 9.39. Steps 1 and 2 are relatively easy to apply, but now we must be careful
to“hold”’ontotheterminalsaandbasthe Théveninresistanceandvoltagearedetermined.In Fig.
9.39, all the remaining elements turn out to be in parallel, and the network can be redrawn as

shown. We have
(6 24 ) 24 ()

R, = - — = =24 Q
6 + 410 10

FIG. 9.41
FIG.9.40 Network of Fig. V.44 redrawn,
Determining fopy for the network in Fig. 9.8,
Step 4: See Fig. 9.40. In this case, the network can be redrawn as shown in Fig. 9.41. Since
the voltage is the same across parallel elements, the voltage across the series resistors R1 and
R2is E1, or 8 V. Applying the voltage divider rule gives

RiE,  (60)NBV) 48V

o = = =48V
ORI AR 60 +480 10




Step 5: SeeFig.9.42.

EXAMPLE 9.9 Find the
Théveninequivalentcircuitforthe
network in the shaded area of the
bridge network in Fig. 9.43.

FIG. 9.42
Substituting the Thévenin equivalent circuit for the
network external 1o the resistor Ry in Fig. 9.37.

T2

‘f;kl\ )\x‘u:

L
|

FIG. 9.44
FIG, 9.43 ldentifving the repminals of particalar intecest for the
Exampic 9.9, network in Fig, Y40,

Solution:
Stepsland2:SeeFig.9.44.
Step 3: See Fig. 9.45. In this case, the short-circuit replacement of the voltage source E

provides a direct connection between ¢ and ¢ in Fig. 9.45(a), permitting a “folding” of the
network around the horizontal line of a-b to produce the configuration in Fig. 9.45(b).

Ry = Ry =R ||Ry + R, || Ry
=6Q30 =40/120
=20 +30 =50

FIG. 9.45
Solving for Ry, for the network in Fig. 9.44.




Step 4: The circuit 1s redrawn in Fig. 9.46. The absence of a direct con-
nection between @ and b results in a network with three parallel branches.
The vohiages V) and V; can therefore be determined using the voltage
divider rule:

RiE 16 Q)72 V) 432V

60+ 30 9
(12 Q72 V)
12Q + 4O

FIG, 9.46
Determining Eqy, for the network in Fig. 9.44.

Assuming the polanty shown for Ep, and applying Kirchhoff's volt-
age law to the top loop in the clockwise direction results in

ScV=+Ep+ ¥~ V=0

-

and Iy =V =V, =54V -3V =6Y

Step 5:See Fig. 9.47.

EXAMPLES9.11ForthenetworkofFig.9.54,

a. FindtheThéveninequivalentcircuitforthe
portion of the network in the shaded area.

b. Reconstructthenetworkoffig.9.54withthe
Thévenin equivalent network in place.

c. Usingtheresultingnetworkofpart(b)find the
voltage Va.

Solutions:

a. Stepsland2:SeeFig.9.55.
Step 3: SeeFig.9.56.

Ry =120[dQ+60)=120[100Q =3

Step 4: Applying the superposition theorem, we will first find the
effectofthevoltagesourceontheThéveninvoltageusingthenetwork of
Fig. 9.57. Applying the voltage divider rule:

gl = 12 (I8 V) _ 216
= 60 +40 + 120 22

V=982V




G2\ [
U (1}
X o=
17+ e
R, |
l
I -

FIG. 9.55
Extablishing the termincls ofiniterest

for the metwprk of Fig. 954,

FIG. 955
LDermbung k,'.

4 L

A

441

———AW——

2
-/

A\

—_—
—
-

FIG. 9.58 FIG. 9.57

Dergrmigsne the contrdbation of 1 te By [’{‘!('l""”'i'fg the comtribution ",J EI 1 En.

The comnbution due © e camrent source 15 determimed using the
petwork of Fig. ©.580G0 redrawn a5 shownin Fig, 9.55%b), Applymg
the current divider rule:
f - A WA
"= = —A = 0,364 /
40 + 180y 22
and Eix 1280)= 364 A2 Q) =

sothat I‘:['vl — "%. - "},\ =1 x.! V - 4%7 \ — 5-45

. The reconsiructad network i shownm Fig. G54
[sang the voliage divider nee

Thévetin egubvulent
8{)I5S45V + 16V)  R(2145) 716
= y = V= 1276V FIG 959

3450 + 81 1345 3.43 Applying the Thévenin equivalent netwerk to the
netvork of Fip. Y.54.

Instead of usng the saperposiiion theoren. the current source could Trst
have been converted to 4 voliage source and the series elements com-
hined to determine the Thévenin voltage I any event boch approaches
wouldl have viekdad the same resalts,




9.4 NORTON’STHEOREM
Anytwo-terminallinearbilateraldcnetworkcanbe replaced by
an

equivalentcircuitconsistingofacurrentsourceanda parallel
resistor, as shown in Fig. 9.65.

FIG. 9.64
Edward L. Norton.
FIG. 9.65 Reprinted with the permission of
Norton equivalent circuit. Lucent Technologies. Inc./Bell Labs,

The discussion of Thévenin’s theorem with respect to the equivalent circuit can also be
applied to the Norton equivalent circuit. The steps leading to the proper values of IN and RN
are now listed.

Norton’sTheoremProcedure

Preliminary:

1. RemovethatportionofthenetworkacrosswhichtheNortonequivalentcircuitisfound.

2. Marktheterminalsoftheremainingtwo-terminalnetwork.

RN:

3. Calculate RN by first setting all sources to zero (voltage sources are replaced with short
circuits and current sources with open circuits) and then finding the resultant resistance
between the two marked terminals. (If the internal resistance of the voltage and/or current
sources is included in the original network, it must remain when the sources are set to
zero.) Since RN _ RTh, the procedure and value obtained using the approach described for
Thévenin’s theorem will determine the proper value of RN.

IN:

4. Calculate IN by first returning all sources to their original position and then finding the
short-circuit current between the marked terminals. It is the same current that would be
measured by an ammeter placed between the marked terminals.

Conclusion:

5. DrawtheNortonequivalentcircuitwiththeportionofthecircuitpreviouslyremoved replaced
between the terminals of the equivalent circuit.

The Norton and Thévenin equivalent circuits can also be found from each other by using the
source transformation discussed earlier in this chapter and reproduced in Fig. 9.66.

FIG. 9.66

Converting between Thévenin and Norton equivalent ceircuets.




EXAMPLE9.12FindtheNortonequivalentcircuitfor the
network in the shaded area in Fig. 9.67.

Solution:

Stepsland2:SeeFig.9.68.

Step 3: SeeFig.9.69,and

Rl,‘ = i

Example 9.12.

R; short-circuit connection between terminals a and b is in
ANV parallelwithR2andeliminatesitseffect.INistherefore the
14} same as through R1, and the full battery voltage appears
across R1 since

‘.._1 — l'\R:\ — “b.')(\ !2 E “\.

Therefore,

FiIG. 9.68

Ideatifving the terminals of particalar interest for == 0 =3 A
the network in Fip. 9.67. | b

Step5:SeeFig.9.71. Thiscircuitisthesameasthefirst one
R considered in the development of Thévenin’s theorem.
W A simple conversion indicates that the Thévenin circuits
£ are, in fact, the same (Fig. 9.72).

= o
3 ’ .. -3
Ry S ! Short

 (

4 ’
- -

AG. 9.69 E vy : I
Determining Ry for the network in Fip. 9.68 _—

P
et
-

Short circusted -~

FIG. 9.70
Determining Iy for the network in Fip, 9.68

Ry = Ry=210

h ¢

+
d},‘ - 2A Ry =210 ) Ry = 10mmpy = bp = IyRy = BARZIN =6V
- | ’ '

|
.

—
— L
-

FIG. 9.71 FIG, 9,72
Subrsriiating 1he Normon eqaivil st oireur for i Converimg e Novtom equivilent Circai in Fig. 9.7itoa
petwork extemal to the revistor By in Fip. ©.67. Thévenin eguivalent cirenit.

EXAMPLED9.13FindtheNortonequivalentcircuitforthenetwork
external to the 9 _ resistor in Fig. 9.73.

Solution:

Stepsland2:SeeFig.9.74.




R
A

5N
/

”%" e DA
L
-

FIG. 9.74

FIG. 9.73
Example 9.1 3. ldentifyink the terminals of
particiler interest for the nerwark in
Fig. 9.73.

Step 3: See Flg. 9.75, and
Ry=R +R=50+40 =90
: sy g-s n
Step 4:-As shown in Fig. 9.76, the Norton current is the same as the cur-
renl through the 4 £ ressstor. Applying the current divider rule gives

£ R,I P
TR R OSQ+4a0 0 9 FIG. 9.75

IDtermining Ry for the neneork in
Fg. 9. 4.

(54010 4) SO A
=556 A

Step 32 See Fig. .77

R,

_G-_ .' ; L . 5564 RS
=

&

10A

FIG 976 FIG. 9.77
Determimine Ju for ihe netwark in Fie: 9.74 Substtening the Noesort equivadent clrowd for he
a5 ol ditiniamand b el nerwork exemal 1o the resistor By in Fig. 9.73.

EXAMPLED9.14(Twosources)FindtheNortonequivalentcircuitfortheportionofthe network to

the left of a-b in Fig. 9.78.

FIG.9.78

FIG. 979
I-,‘wm,ﬂl’r G.l4

ldentifying the terminals of particalar interes:
for the tework in Fie. 9.78.

Solution.
Steps | and 2: Sce Fig. 9.79.
Step 3: See Fig, 9.80, and

4Ox6Q) 240 _ 2.4 £

R\:R||R::4“ ("“‘=‘1“~h“— 10

Step 4: (Using superposition) For the 7 V battery (Fig, 9.81)




Showt ¢ s ied

v

" 75 A

I'\: = —=

R, 40

For the 8 A source (Fig. 9,832}, we find that both R, and R, have been
“shoet circuited” by the direct connection between a ad b, and

Br=1=84

The resuli is
I p w =38 1L7SA = 625A
. FIG. 9.81 Step 5- See Fig, 9.83
Determining the covrifrution (o Ly from the voltage
source ¢ |

9.5 MAXIMUMPOWERTRANSFER Shovt ¢ rcuited

y',‘é 911 L
625A <Ry = ;u;;ﬁ{ RS 100

& =2

o N

=

oWV

T

>

h

FIG. 9.82
FIG.9.83 Determining the contribution to Iy from the owrront
Substitating the Narton equivalent circait for the network to i left of sonirce |
ferminads a-b in Fig. 9.78
THEOREM
Whendesigningacircuit,itisoftenimportanttobeabletoansweroneofthefollowing questions:
Whatloadshouldbeappliedtoasystemtoensurethattheloadisreceivingmaximum power from
the system?
Conversely:
Foraparticularload,whatconditionsshouldbeimposedonthesourcetoensurethatit will deliver
the maximum power available?
Even if a load cannot be set at the value that would result in maximum power transfer, it is
oftenhelpfultohavesomeideaofthevaluethatwilldrawmaximumpowersothatyoucan compare it
to the load at hand. For instance, if a design calls for a load of 100 Q, to ensure that the load
receives maximum power, using a resistor of 1 Q or 1 k Q results in a power transfer that is
much less than the maximum possible.
However, using a load of 82 Q or 120 Q probably results in a fairly good level of power
transfer.Fortunately,theprocessoffindingtheloadthatwillreceivemaximumpowerfroma
particular system is quite straightforward due to the maximum power transfer theorem,
which states the following:
Aloadwillreceivemaximumpowerfromanetworkwhenitsresistanceisexactlyequalto the
Thévenin resistance of the network applied to the load. That is,

In other words, for the Thévenin equivalent circuit in Fig. 9.84, when the
load is set equal to the Thévenin resistance. the load will receive maxi-
mum power from the network.

Using Fig. 9.84 with Ry = Rp,. we can determine the maximum
power delivered to the load by first finding the current:

— ETh — ETH — E‘l’?a
Rmm + Rz Rpw + Rm 2Rp,

I
FIG. 9.84
Then we substitute into the power equation: Defining the conditions for maximum power to a
> 2 load using the Thévenin equivalent circuit.
P = IR, = (ETh )—(R y = Ey Ry
r LA 2Rm Th 4R%§E




E2
and o= (9.3)

4Ry,

The total power delivered by a supply such as ETh is absorbed by both the Thévenin
equivalentresistanceandtheloadresistance. Anypowerdeliveredbythesourcethatdoes not get
to the load is lost to the Thévenin resistance.

Under maximum power conditions, only half the power delivered by the source gets to the
load. Now, that sounds disastrous, but remember that we are starting out with a fixed
Thévenin voltage and resistance, and the above simply tells us that we must make the two
resistancelevelsequalifwewantmaximumpowertotheload.Onanefficiencybasis,weare working
at only a 50% level, but we are content because we are getting maximum power out of our
system.

Thedcoperatingefficiencyisdefinedastheratioofthepowerdeliveredtotheload(PL)to the power
delivered by the source (Ps). That is,

P
n% = ? > 100% (9.4)

I

For the situation where R; = Ry,

3R R
1% = —— X 100% = —= X 100% =

iRy Ry Ry, +

Ry, 1
= — X 100% = — X 100% = 50%
2Rp, 2

Ifefficiencyistheoverridingfactor,thentheloadshouldbemuchlargerthantheinternal
resistance of the supply. If maximum power transfer is desired and efficiency less of a
concern, then the conditions dictated by the maximum power transfer theorem should

be applied.

A relatively low efficiency of 50% can be tolerated in situations where power levels are
relatively low, such as in a wide variety of electronic systems, where maximum power
transfer for the given system is usually more important. However, when large power levels
are involved, such as at generating plants, efficiencies of 50% cannot be tolerated. In fact, a
great deal of expense and research is dedicated to raising power generating and transmission
efficiencies a few percentage points. Raising an efficiency level of a 10 MKW power plant
from 94% to 95% (a 1% increase) can save 0.1 MkW, or 100 million watts, of power—an
enormous saving. In all of the above discussions, the effect of changing the load was
discussedforafixedThéveninresistance.Lookingatthesituationfromadifferentviewpoint, we can
say

if the load resistance is fixed and does not match the applied Thévenin equivalent
resistance,thensomeeffortshouldbemade(ifpossible)toredesignthesystemsothatthe Thévenin
equivalent resistance is closer to the fixed applied load.

In other words, if a designer faces a situation where the load resistance is fixed, he or she
shouldinvestigatewhetherthesupplysectionshouldbereplacedorredesignedtocreatea closer
match of resistance levels to produce higher levels of power to the load.




FortheNortonequivalentcircuitinFig.9.90,maximumpowerwillbedeliveredtotheload when ,

This result [Eq. (9.5)] will be used to its

fullestadvantageintheanalysisoftransistor
networks,wherethemostfrequentlyapplied ®
transistorcircuitmodelusesacurrentsource ﬁ
rather than a voltage source.

FortheNortoncircuitinFig.9.90, . ng g'RL R,

LRy
LJ'DE.'I - 4

(W) (9.6

Todemonstratethatmaximumpoweris indeed FIG. 9.90
transferred to the load Defining il diti . -
undertheconditionsdefinedabove,consider the 8 “‘? conat ’?ﬁsfﬂr ma_’”” i P_ﬂ”’ ‘f_"' vda
Thévenin equivalent circuit in Fig. 9.85. load using the Norton equivalent circuit.
Beforegettingintodetail,however,ifyouwere to
guess what value of RL would result inmaximum
power transfer to RL, you might think
thatthesmallerthevalueofRL,thebetteritis because
the current reaches a maximum when itis squared
in the power equation. The problem
is,however,thatintheequationPL= | 2
LRL, the load resistance is a multiplier. As it gets
smaller, it forms a smaller product. Then again, FIG. 9.85
you might suggest larger values of RL becausethe Thévenin equivalent network to be used to validate
output voltage increases, and power is the maximum power transfer theorem.
determinedbyPL=V2L/RL.Thistime,
however, the load resistance is in the denominator of the equation and causes the resulting
power to decrease. A balance must obviously be made between the load resistance and the
resulting current or voltage. The following discussion shows that
maximum power transfer occurs when the load voltage and current are one-half their
maximum possible values.
Forthe circuitin Fig.9.85, thecurrentthroughtheloadisdeterminedby
Er 60V
Ry, + R 0 + R,

The voltage s determined by

s o S SO0
R, + Ry R, + Ry,
and the power by

60V . IGNOR,
y (O + R,)"

I:v == fj.RL — (:'1—1 - R“.

If we tabulate the three quantities versus a range of values for Ry from
0.1 £2 10 30 £2. we obtain the results appearing in Table 9.1, Note in
particular that when R is equal to the Thévemn resistance ot 9 {2, the




power has a maximum value of 100 W, the current is 3.33 A, or one-half its maximum value
of 6.67 A (as would result with a short circuit across the output terminals), and the voltage
across the load is 30 V, or one-half

its maximum value of 60 V (as would result with an open circuit across its output terminals).
As you can see, there is no question that maximum power is transferred to the load when the
load equals the Thévenin value.

The power to the load versus the range of resistor values is provided in Fig. 9.86. Note in
particular that for values of load resistance less than the Thévenin value, the change is
dramatic as it approaches the peak value. However, for values greater than the Thévenin
value, the drop is a great deal more gradual. This is important because it tells us thefollowing:
If the load applied is less than the Thévenin resistance, the power to the load will drop off
rapidly as it gets smaller. However, if the applied load is greater than the Thévenin
resistance, the power to the load will not drop off as rapidly as it increases.

In all of the above discussions, the effect of changing the load was
discussed for a fixed Thévenin resistance. Looking at the situation from
a different viewpoint, we can say

if the load resistance is fixed and does not match the applied
Thévenin equivalent resistance, then some effort should be made (if
possible) to redesign the system so that the Thévenin equivalent
resistance is closer to the fixed applied load.

In other words, if a designer faces a situation where the load resistance is
fixed, he or she should investigate whether the supply section should be
replaced or redesigned to create a closer match of resistance levels to
FIG. 9.90 produce higher levels of power to the load.
Defining the conditions for maximum power to a For the Norton equivalent circuit in Fig. 9.90, maximum power will
load using the Norton equivalent circuit. be delivered to the load when

09

This result [Eqg. (9.5)] will be used to its fullest advantage in the analysis
of transistor networks, where the most frequently applied transistor
circuit model uses a current source rather than a voltage source.

For the Norton circuit in Fig. 9.90,

IR
P =" W)

EXAMPLE 9.15 A dc generator, battery, and laboratory supply are
connected to resistive load R; in Fig. 9.91.

a. Foreach, determine the value of K} for maximum power transfer to ;.
b. Under maximum power conditions, what are the current level and
the power to the load for each configuration?

. What 1= the efficiency of operation for each supply in part (b)?

. If aload of 1k{} were applied to the laboratory supply, what would
the power delivered to the load be? Compare your answer to the
level of part (b). What is the level of efficiency?

. For each supply, determine the value of R for 75% efficiency.




Ry = 0050 Ry =200

§RL §RL

+ +
E =12V E

ia) dec generator (b) Battery ic) Laboratory supply

FIG. 9.91
Example 9.13.

Solutions:
a. For the dc generator,

RL = R]r'h = R.;m = 2+5 ﬂ

For the 12 'V car battery,
Ry = Rp, = R, = 0,050}
For the dc laboratory supply,
Ry = Rpp, = Ry, = 2042
. For the dc generator,

P Ef _ E*  (120V)
Low ™ 4Rpn — 4R,  4(2.5 Q)

= 144 kKW

For the 12 V car battery,

Ef, E? (12 V)2
PL o o o

— = T20 W
mr T ARp, 4R,  40.05 Q)

For the dc laboratory supply,

Ef _ EX 4o v)y

Proe = 4Ry, 4R, 420Q) 20w

. They are all operating under a 30% efficiency level because K; — Ky,
. The power to the load is determined as follows:

. E _ 40V 40V
R, + R, 200 + 10000 1020 Q

and P = [fR; = (3922 mAY (1000 £2) = 1.54 W

= 30.22 mA

Iy

The power level is significantly less than the 20 W achieved in
part (b). The efficiency level is

1.54 W .54 W
X 100% = = 100%

Fy
% =L % 100% = ——
= p ¢ El, (40 V)(39.22 mA)

_ 154W
1.57 W

> 100% 98.09 %




which 1s markedly higher than achieved under maximum power
conditions—albeit at the expense of the power level.
For the dc generator,

__ R

" Rp + Ry

K
Rp + R
7R + R = Ry
nRry + 9k = K

R (1 — m) = nRp,

(n in decimal form)

and n=

_ "Ry
I —n

R

_07525Q)
L= 9-0715
For the battery,
0.75(0.05 Q)
= — = . 5
L 1 —0.75 0.15 @

For the laboratory supply,

0.75(20 Q)
e Sk e PR
Ry o5 0o

EXAMPLE 9.16 The analysis of 4 transistor network eesulted in the

redocad equivalent in Fi;_: 0.92

1
i
J(I 10mA &, < 4050 § Ry v Fiod the toad reststance thatr will resalt wn maximum power transfer
I I 1o thae Jooxl, s find the mestmum power defiversd

= b, If the load were changad to 68 &), woukd vou expect o fairly high
tevel of power transfer 1o the load based on tie results of past (2)?
What weeld the new power level be? Is your mitial assumption
verifeed?

If the load wers changed to 8.2 k1), would you expect o fudy high
level of power transfer 1o the load based on the results of pant (a)?
What would the new power Jevel be! Is vour imtia! assumplion
verified?

FIG. 992
Exaagre 910,

Solutions
v Replacing the carvent source by an open-circait oquivalen resalisin
R = R = 30k1)

Restonng the carvent sowrce and finding the opea-cireuit voktage ol
the cutput eominals resules i

Ero= V= IR, = (10 mAX40k{1) — 400V
For maximum power transier 1o the foad,
R = Ry = kD
witha masimum power level of

£ (400 V)
H =5 1 KNG Y- -

= 4R A0k




. Yes, because the 68 k{) load is greater (note Fig. 9.86) than the
40 k{2 load, but relatively close in magnitude.

= fm 400V 400

= 3.7 mA

Ry + R, 40kQ + 68kQ  108kQ
P, = I7R, = (3.7 mAY(68 k) = 0.93 W

Yes, the power level of 0.93 W compared to the | W level of part
(a) verifies the assumption.
. No. 8.2 k() is quite a bit less (note Fig. 9.86) than the 40 k() value.
B 400V 400V
. 40kQ + 82k 48.2k0
= (83 mA)*8.2k2) = 05T W

= 8.3 mA

Yes, the power level of 0.57 W compared to the | W level of part (a)
verifies the assumption.




CHAPTER-05

ACCIRCUITANDRESONANCE

DirectCurrent

AlternatingCurrent

1

N

t—>

iT ~~"

{ —

(1)

(2)
(3)

4)

D.C. always flow in onedirection
and whose magnitude remains
constant.

Highcostofproduction.

It is not possible by D.C.Because
D.C.is dangerous to the
transformer.

Itstransmissioncostistoohigh.

(1)

(2)
3

(4)

A.C. is one which
reverseperiodically in

direction and whose magnitude
undergoes a definite cycle changes
in definite intervals of time.

Lowcostofproduction

Byusingtransformer A.C.voltage
can be decreased or increased.

A.C.canbetransmittedtoalong
distance economically.

DefinitionofA.C.terms:-
Cycle:lItisonecompletesetof+veand—vevaluesofalternatingquality spread over

360°or 2] [radan.

TimePeriod: Itisdefinedasthetimerequiredtocompleteonecycle.
Frequency:ltisdefinedasthereciprocaloftimeperiod.i.e.f=1/T

Or

Itisdefinedasthenumberofcyclescompletedpersecond.
Amplitude : It is defined as the maximum value ofeither +ve halfcycle or —ve

half cycle.

Phase: Itisdefinedastheangulardisplacementbetweentwohavesiszero.




OR
Two alternating quantity are inphase v
when each pass through their zero value at I
the same instant and also attain their v 1
maximum value at the same instant in a
given cycle. il t—

V=V sinwt i
=lpsin wt

PhaseDifference:-Itisdefinedastheangulardisplacementbetweentwoalternating
guantities.
OR
If the angular displacement between two waves are not zero, then that is
known as phase difference. i.e. at a particular time they attain unequal distance.

v

b o— NS

OR

Two quantities are out of phase if they reach their maximum value or
minimumvalueatdifferenttimesbutalwayshaveanequalphaseanglebetween them.

HereV=Vpsinwt

I=Imsin(wt-o)

Inthiscasecurrentlagsvoltagebyanangle‘d’.
PhasorDiagram:
GenerationofAlternatingemf:-

Consider a rectangular coil of “N” turns, area of cross-section is ‘A’ nt?is
placed in
x-axis in an uniform magnetic field of maximum flux density Bm web/nt?. The
coil is rotating in the magnetic field with a velocity of w radian / second. Attime
t = 0, the coil Is in x-axis. After interval of time ‘dt’ second the coil make
rotating in anti-clockwise direction and makes an angle ‘0’ with x-direction.The
perpendicular component of the magnetic field is $= ¢n cos wt

AccordingtoFaraday’sLawsofelectro-magneticlnduction



o= NI
q dt
=N"(¢  coswt)
de "
=—N(—dpmwcoswt)
=Nw@msinwt
=2nfNOmsinwt(Qw=2rf)
=2nfNB, Asinwt e
=E_sin wt
Where E,=2nfNB,A
f—frequencyinHz
Bm—MaximumfluxdensityinwWhb/mt?
Nowwhenfborwt=90°e =
Em
ie.  En=2nfNBnA

0
N/
RootMeanSquare(R.M.S)Value:—

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which
when flowing through a given circuit for a given time produces same heat as
produced by the alternating current when flowing through the same circuit for
the same time.

Sinuscdialalternatingcurrentis i

= Imsin wt = 1,Sin 6

The mean of squares of the instantaneous values of current over one
complete cycle

P Y i2.d0

~(2m-0)
Thesquarerootofthisvalueis
B Tﬁue
21

0

_ /TQ sinG)? "
. 2n




/ m@ do

\/nI, 3 ( k|c0326\ Jde

22n

1
e [(1-cos20) dO
0

~ \/ﬁ e—smze?ﬂ
Va2

AverageValue:—

The average value of an alternating current is expressed by that steady
current (d.c.) which transfers across any circuit the same charge as it transferred
by that alternating current during the sae time.

Theequationofthegiltdeernatingcurrentisi:Imsine

IaV:
(-0)
j( sV - =nfsing.do
71:0

=I_[—E)se] :Im[—cosn—(cosoo]
0

[1-0-1)]

21,

L
| _2xMaximumCurrent

av

T

av

T
Hence,1,,=0.6371,,

Theaveragevalueoveracompletecycleiszero



Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of
maximum value to r.m.s value.
MaximumValue |
Ka= =
RMSVvalue Iy
J2

Formfactor:-Itisdefinedastheratioofr.m.svaluetoaveragevalue.

=2 =1.414

Kiz r.m.s.Value :O.707Im _J2 -1.414
Average.Value  0.6371,
Kf=1.11

PhasororVectorRepresentationof AlternatingQuantity : —

/ /\il I 3
Ia—=bA I\, .
\j |

An alternating current or voltage, (quantity) in a vector quantity whichhas
magnitude as well as direction. Let the alternating value of current be
represented by theequation e = ESin wt. The projection of Enon Y-axis at any
instant gives the instantaneous value of alternating current. Since the
instantaneous values are continuously changing, so they are represented by a
rotating vector or phasor. A phasor is a vector rotating at a constant angular
velocity

Att, e,=E,sinwt;

Aty e=E sinwt,

AdditionoftwoalternatingCurrent:—

Lete,=E,sinwt
e=E,sin(wt—¢) E
The sum of two sine waves of the samefrequency =
Is another sine wave of samefrequency but of a o
different maximum value and Phase. - = >

e= \/ eie+Zeecos
PhasorAlgebra:—
Avectorquantitycanbeexpressedintermsof
(i)  RectangularorCartesianform
(i) Trigonometricform
(ili)  Exponentialform



(iv) Polarform

E sin g
E=a+jb 5
=E(cos0+jsin0)
Where a = E cos 0is the active part Ecos g

b=Esin0Oisthereactivepart
e=tan1(bC%|D’haseangle

= V-1(90°)
*=—1(180°)
j'=-i(270%)
j*=1(360°)

()  Rectangularfor:-
E=atjb
tan=b/a
(i)  Trigonometricform:-
E=E(cosO+jsin0)
(iii) Exponentialform:-
E=Ee*
(iv) Polarform:-
E=E/+e (E= Va%+b? )
AdditionorSubtration:-
E=a,+jb,E,=
a b,
E, iEz—(al"‘?-z%l(?ﬂ; ?z
d=tan  aip |
L )
Multiplication:-
E,xE=(a;+ja,)£(a;+jb,)
=(a,8,-b,b,)+(a;a,+0,b,)



71( a,b 2+b18.2\
o=tan a3 bh |

\12 1)
E.=E,£0,
E,=E,Z0,
ExE=E,E,Z¢,+¢,
Division:-
Ele Z0,E,

E EZG Eléee

E, E«0, E, ' °

A.C.throughPureResistance:—

LettheresistanceofRohmisconnectedacrosstoA.Csupplyofapplied voltage

—_—
e

AA
AAAAALS

<,
. e = Emsin Wt or v= Vpysin wt
e=E,sinwt 1)
Let‘I’istheinstantaneouscurrent.
Here e = IR
=i=e/R
I=EnSINWL/R ==--=====mmm e (2)

Bycomparingequation(1)andequation(2)wegetalternatingvoltage and
current in a pure resistive circuit are in phase

Instantaneouspowerisgivenby P

=el
:Emsm\_/vtz. Imsinwt o= Emsin'}_ﬁ
=Emlmsincwt [ = Imsin wt
=E”‘i23in2wt T

E 2

\/_ 4\/]__ COS2Wt) T ey
|:>_ m




WhereVn n iscalledconstantpartofpower.
V2 V2

Vi 'mj;zeszvvtis calledfluctuating partofpower.

J2

Thefluctuatingpart \%cosz\/vt offrequencydoublethatofvoltageandcurrent

waves.
. Vo1
Hencepowerforthewholecycleis p=n_m__ v |
p y ]2 [2 ms rms

=P=VIwatts

A.CthroughPurelnductance:—
Letinductanceof® L henryisconnectedacrossthe A.C.supply

P e,
N
v =Vusin wt

V=V, sinwt 1)
AccordingtoFaraday’slawsofelectromagneticinductancetheemfinduced across the
inductance

v-Ld
di dt v = Vmsin wt
_'istherateofchangeofcurrent §— I sin(we—{2)
dt
Vsinwt=LdI _
m dt
di V,sinwt
&L o T

—di="msinwt.dt L
Integratingbothsides,
[dti= osinwt. it

L
i:Vm( COSWt)

L w



i Vincoswt

wL
.__Vm
E;_V@%Wn%v’i\ |
_ Vi Wt_kﬂ\ 2)
X U2

Maximumvalueofiis
I=""when
mo — sin wt
X L

[QX=2nfL=wL]

Hencetheequationofcurrentbecomesi =l sin(wt—n/2)

So we find that if applied voltage is rep[resented

byflowing in a purely inductive circuit is given by

i=1_sin(Wt-m/2)

Herecurrentlagsvoltagebyananglen/2Radian.

Powerfactor =C0Sd

=c0s90°

=0
PowerConsumed=VIcos¢

=VIx0

=0
Hence,thepowerconsumedbyapurelylnductivecircuitiszero.

A.C.ThroughPureCapacitance: —

C

i =1 sn{wt— /%)

vV = Vmsin wt

)
=/

v = Vmsin wt

NS

7 L

t—

v=V,_sinwt,thencurrent

Letacapacitanceof® C”’faradisconnectedacrossthe A.C.supplyofapplied voltage

v=V, sinwt

Let ‘g’=changeonplateswhenp.d.betweentwoplatesofcapacitoris‘v’

gq=cv
g=cVmsinwt



d_q:cd(isinwt)

dt dag ™

I=cVmSinwt

=wcVmcoswt

= =coswt
1/wc

Vi I ..

=-"_—coswt [ex, == = isknown as capacitivereactance
Xc we  2nfc

inohm.]
=l coswt

=l sin(wt +m/2)
Herecurrentleadsthesupplyvoltagebyanangler/2radian.

Powerfactor =C0sd
=cos 90° =0

Power Consumed= VI cos ¢
=VIx0 =0

Thepowerconsumedbyapurecapacitivecircuitiszero.
A.C.ThroughR-LSeriesCircuit:—

L
" (T0000)_
W
+ Vr 34 VL —>
F—
N/

e=FE_sn wt

TheresistanceofR-ohmandinductanceofL-henryareconnectedinseries across the A.C.
supply of applied voltage

8=E  SINWE---m e (1)
VRl X)

AR

= 2 2 :tan‘l(xL\R)

v 1 -
=l RZX? —tan‘l(xL\ LR /
% )

Vi=IXL
e

V=IZ£d=ta

Vr=IR



Wherez= |/R%+X?

=R+jX, isknownasimpedanceofR-LseriesCircuit.

V. _E,sinwt
N2
I=1,sin(Wt—¢)

Herecurrentlagsthesupplyvoltagebyanangled.
PowerFactor:—Itisthecosineoftheanglebetweenthevoltageandcurrent.
OR
Itistheratioofactivepowertoapparentpower.
OR
Itistheratioofresistancetoinpedence.
Power:—
=V.i
=V, sinwt. I sin(wt—¢)
=V, | ,sinwt.sin(wt—¢)
1
= E\{“m 2sinwt.sin(wt—g)

1
= E\/I [cosp—cos2(wt—)]

mm

Obviouslythepowerconsistsoftwoparts.
(i)  aconstantpart™Vicospwhichcontributestorealpower.
. : 2 1 : :
(i)  apulsatingcomponent™Vicos(2wt—¢)whichhasafrequencytwice
2mm
thatofthevoltageandcurrent.ltdoesnotcontributetoactualpowersinceits average value
over a complete cycle is zero.
Henceaveragepowerconsumed
= Vicosd
2mm
Vil
22
=VIcosd
WhereV&lrepresentsther.m.svalue.
A.C.ThroughR-CSeriesCircuit:—
Theresistanceof'R’-ohmandcapacitanceof* C’faradisconnectedacrossthe

A.C.supplyofappliedvoltage

cosd



e=E,,sinwt e (1)

R
—W\

; Vr 3k Ve

- 0

¥

Y
gy
V=Vet(=1Vo)
=IR+(-j1X,)
=I(R-JXc)
V=1Z

Where Z=R-jX.= R%X? . isknownasimpedanceofR-CseriesCircuit.
Z=R—jX.

e

4—(|)=tan*1r | |
— I

R y
V=IZ/-¢
v

w2 NS

:Emsinwt
2/~
=E_msjn(wt+¢)
4
=l=l sin(wt+d)
Herecurrentleadsthesupplyvoltagebyanangle“d’.

A.C.ThroughR-L-CSeriesCircuit:—
Letaresistanceof*R’-ohminductanceof* L henryandacapacitanceof*C’ farad are

connectedacross the A.C. supply in series of applied voltage

R mm ¢

— —Vi—Ve

(=)
=/

e=F_sn wi

e Q)



- - -

=VeHV Ve
=VeH(V-Ve)
=g H(IX~1X¢)

=I[R+(X.—X¢)]
n—l(XL_X c)

=l Z+0=ta
JRA(X=X L) ¢ |

L R

=1Z/+¢
Where z=1 R%+(X-X .)* isknownastheimpedanceofR-L-CSeries
Circuit.

IfX,>X;,thentheangleis+ve.

IfX <X, then the angle is -ve.

Impedanceisdefinedasthephasorsumofresistanceandnetreactance
e=lZ/+¢

e 12240 :Emsinvvt
Z/+¢ Z/+¢
(1)  If x>xc thenP.fwillbelagging.
(2) If X<Xc,then,P.fwillbeleading.
(3) If X.=Xc,then,thecircuitwillberesistiveone.Thep.f.necomesunity

andtheresonanceoccurs.

=l=

=1, sin(wizd)

REASONANCE
_It is defined as the resonance in electrical circuit having passive or active
elements represents a particular state when the current and the voltage in the
circuitismaximumandminimumwithrespecttothemagnitudeofexcitationat a
particular frequency and the impedances being either minimum or maximum at
unity power factor
Resonanceareclassifiedintotwotypes.
(1)  SeriesResonance
(2) ParallelResonance
(1) Series Resonance :-  Letaresistanceof'R’ohm,inductanceof*L’ henry
and capacitance of ‘C’ farad are connected in series across A.C. supply




@ = K_sin wi
e=E, sinwt
Theimpedanceofthecircuit
Z=R+j(X,—X¢)]
Z= JRAHX-X )

Theconditionofseriesresonance:
Theresonancewilloccurwhenthereactivepartofthelinecurrentiszero The p.f.

becomes unity.
The net reactance will be zero.
The current becomes maximum.
Atresonancenetreactanceiszero
X,—X =0
=X =Xc

1
W,C
—W?2LC=1

:>W2:1 .
° LC

=W, L=

=>W,= L
LC
=2nf = L

° JLC

1
=f=
21~/ LC

Resonantfrequency(f,)=

ImpedanceatResonance

Zo= R
CurrentatResonance

V

= _

° R
Powerfactoratresonance

R R
T [@. k]



ResonanceCurve:-

Unity p.f.(u.p.f) lo

Lagging
P.f

fo

At low frequency the Xcis greater and the circuit behaves leading and
at high frequency the X, becomes high and the circuit behaveslagging
circuit.
Iftheresistancewillbelowthecurvewillbestiff(peak).
o If the resistance will go oh increasing the current goes on decreasing and

the curve become flat.
BandWidth:—

At point ‘A’ the power loss is I#R.

Thefrequencyisfowhichisatresonance. )
IR
Atpoint‘B’thepowerlossis OT

Thepowerlossis50%ofthepowerlossatpoint ‘A”/

A

corresponding / i

fl—Lowerhalfpowerfrequency

i B
4nL

F,=Upperhalfpowerfrequency

f=fo+ R
4rl
Bandwidth(B.W.)isdefinedasthedifferencebetweenupperhalfpower
frequencyadlowerhalfpowerfrequency.
BW.= fof=
2nL

Io

Hencethefrequencies
;r frequencies f1& fo.




Selectivity:—
SelectivityisdefinedastheratioofBandwidthtoresonantfrequency
Selectivity= BW. - R__ Selectivity=
f, 2L 2nf L
QualityFactor(Q-factor).—
Itisdefinedastheratii)ofznxMaximumenergystoredtoenergydissipated per cycle
27tx" LI2

0
factor = _—2
Q RT

_anjf
IRRT
L2
~IRT
L2
~IRT
oL
~RT

27tf L. [ 1]

Qualityfactor==

Qualityfactorisdefinedasthereciprocalofpowerfactor.

Qfactor== L
cosd

Itisthereciprocalofselectivity.
Q-factorOrMagnificationfactor

_Voltage across Inductor.
B Voltage across resistor
AT
IR

X

N
R
2nef,L WL

R R

Q-facto r==W°LT

Q-factorfactor _Voltage across Capacotor.
Voltage across resistor
_oXe

IR



Xc

R
1
2nf,C  2nf,CR
1
Q-factor=
W,CR
QZ:WOLx 1
R  W.CR
1
2_
Q R’C
[1
Q= R2C
ot [t
RVC

GraphicalMethod:—

(1) Resistanceisindependentoffrequencyltrepresentsastraightline.

(2) InductiveReactance X, =2xnfL

Itisdirectlyproportionaltofrequency. Asthefrequencyincreases, X increases
1

- 2nfC

(3) CapacitiveReactanceXc=

f ———

It isinversely proportional to frequency. As the frequency increases,

Xcdecreases.
When frequency increases, X increases and Xcdecreases from the

highervalue. . —_—
T.*..‘L"Y_'A_ ’ _;k *'A.'
l

£
|
&




fo

v ®

-Xc
Atacertainfrequency. X =Xc
ThatparticularfrequencyisknownasResonantfrequency.
Variationofcircuitparameterinseriesresonance:

(2) Parallel Resonance :- Resonance willoccur when the reactive part of
theline current is zero.

= i1

I o
o
L

At resonance,

|c—||_Sin(1)=0
I=I.sind
v Vv .
= = —qu)
Xc w}RerXz L
:>\/i v X XL Iec
Xe JR2x2 | \JREXE leos
1
= = XL ILsind) "
Xc R2+X LZ I
:>R2+X2=}_(.X L c
—=7%==X | X. =W,Lx



=R*X ==

L
—R2(2nf L= —
cC

SR2pan? L=

L
—ap’f | L=R?

C
=f’= L :(L—RZ\
0 4’ 0 L2 LE J
e L[L R
2 VLC L

fo=Resonantfrequencyinparallelcircuit.
CurrentatResonance=1,cos¢

v R
JREXE | R%XE
R
R%+X
VR
2
VR___V
LIC  LIRC
v

Dynamic Impedence
L/RC—Dynamiclmpedanceofthecircuit.
or, dynamic impedances is defined as the impedance at resonance frequency in
parallel circuit.
ParallelCircuit:—

Theparallelresonancecondition:



Whenthereactivepartofthelinecurrentiszero. The net
reactance is zero.
Thelinecurrentwillboeminimum. The
power factor will be unity
Impedance Zi=Ri+jX_
Zzsz_ch
: 1 1
Admittance Y= —=—~
Z, RyX |
_ (Ri+X)
(RAHXDR=IX)
:Rl+jXL
RZ+X% |
R, —j X,
R2+X2. RZ+X? |
Admittance Y,= i=_;
Z,  RyHXc
_ (R Xc)
(R2—JX)(RoHjXc)
:R2+jXL
RZX?
R, +j Xe
BZ+X2C R§+X2 C

1=

Y2:

Total Admittance Admittance @ :zl_+17z_
)
=Y=Y,+Y,
Rl i XL _R_2_+ . XC
=Y= ] R2+X ) J—
RA4X, RAX2 | 2T ¢ RI+X? ¢
ye R, R2 J ( Xg
= Ryxe * R r<+X TREXE )
AtResonance,
X, _ Xe =0
RZtX2 | R&4X?
X Xe

RAXT 7~ REAX?
:>XL(R §+X2)EX(R2‘EX21 L )

=2nfL|R%+ 1 . \]: 1 (R2 +Af sz)
2 awPc?l ) onfc t

L R?Z ogfL?
—=2nfLR, ? + 2 — 1,
TULR2 2nfC S C c




|_ R 21 2mfL2

-2 fLRz
N |
2
2 fckc L \C )
—R? 2
—an2Lc=C . ! L-CR
~—R? L-CR?,
6 2
1/ I]_—CRZ\
A= a
LC}L—CRZ ’
1 [L-CR
== 1]
4nLC|L-CR,)
2
L 1 ( L-CR,

2n/LC |\ L-CR ,]

e \/{ L-CR? )
[C-LCR? ) |
fiscalledResonantfrequency.
IfR?=0

_CR2
Then = 1 | o
2n L’C

1 [L-CR%
itV

— 1 L 2
“onlVC ot
1 /L R
AT

1 [L R
. _1
2r VLC L2

IfR1andR,=0,then
f=1 _ L
2n \ L?C

S
2t \LC ~ 2n/LC

ComparisonofSeriesandParallelResonantCircuit:—

Item Seriesckt(R-L-C) Parallelckt(R-Land C)




% ImpedanceatResonance Minimum Maximum
v Vv
% CurrentatResonance . ~ .
Maximum=g Minimum=/cR)
% Effectivelmpedance R L
CR
% P.f.atResonance Unity Unity
+ ResonantFrequency —1 1 /l_R o
_n 2n \LC L?
LC
o |t|\/|agnifies Voltage Current
s Magnificationfactor % %

Parallelcircuit:—

I1 Ri ml
41 fE Ro- C .
=~ )

, o
v.f

Z=R, +jX= + R12+X Lzéq)l
ZZ=R1 _jXC= ‘\’ R2§+X Czé_d) 2

V V
1= =40 =1/
1 ZZ$ yA 1 1 1
V 1 1 1
Where "=VY
1
Zl

HereY;—Admittanceofthecircuit

Admittanceisdefinedasthereciprocalofimpedence.




\'
R+jX,
V V

e = Ly VY2 L=l 2
= gge, 7, neVVectsl ek

|,=VY, =

I=+/ 12412 , 4211, cos(dr+dr)

Itov"“ ‘1_

The resultant current “I” 1s the vector sum of the branch currents [1&
I,canbefoundbyusingparallelogramlowofvectorsorresolvinglzintotheirX



—andY -components(oractiveandreactivecomponentsrespectively)andthen by
combining these components.

Sumofactivecomponentsofliandl;=11c0Sd1+12c05¢2
Sumofthereactivecomponentsofl;andl,=l,sing2-11Sind:

EXP-01:
A60Hzvoltageof230Veffectivevalueisimpressedonaninductanceof
0.265H
(i)  Writethetimeequationforthevoltageandtheresultingcurrent.Letthe zero
axis of the voltage wave be att= 0.
(i)  Showthevoltageandcurrentonaphasordiagram.
(ili)  Findthemaximumenergystoredintheinductance.
Solution:-
V.= J2V= /2x230V
f=60Hz, W=2nf =2mx60=377rad/s.
X=wl=377x0.265=100Q
(i)  Thetime equationfor voltageisv(t)=2302sin37/t.

l,.=V../x=230  +/2/100.=2.3 /3
$=90°(lag).

QCurrentequationis.
i(t)=2.32sih(377t-7/2)

0r=2.32cg5377t

(i) It ) )

(i) OorE  =LIPm="x0.265x(2.32)*<1A)
max 2 2

Example-02:

The potential difference measured across a coil is 4.5 v, when it carries a
direct current of 9 A. The same coil when carries an alternating current of 9A at
25 Hz, the potential difference is 24 v. Find the power and the power factor
when it is supplied by 50 v, 50 Hz supply.

Solution:

LetRbethed.c.resistanceandLbeinductanceofthecoil.

R=V/1=4.5/9=0.5Q



Witha.c.currentof25Hz,z=V/1.

ﬁzZ.BBQ
9
x=vZ>-R? =4/2.662-0.52
=2.62Q
X, =2mx25xL
X =0.0167Q
At50Hz
X, =2.62x2=5.24Q2
Z= ~/0.5%45.24?
=5.06 Q
1=50/5.26=9.5A
P=1?/R=9.5°x0.5=45watt.
Example—03:

A50-pfcapacitorisconnectedacrossa230-v,50—Hzsupply.Calculate
(@)  Thereactanceofferedbythecapacitor.
(b)  Themaximumcurrentand
(c)  Ther.m.svalueofthecurrentdrawnbythecapacitor.
Solution:

1
(@ x= = = L ~63.60
WwC 2nfe 21tx50x50x10°

(c)  Since230vrepresentsther.m.svalue
Ql,,=230/x=230/63.6=3.62A
b)  1=l,.x 2=3.62x /2 =5.11A
Example—04:
InaparticularR—Lseriescircuitavoltageof10vat50Hzproducesa current of 700
mA. What are the values of R and L in the circuit ?

Solution:
(i)  z= RA(2mx50L)
= v R?+98696L.2
V=1z

10=700x10"% /(R2-+98696L?)
J(R2+98696L2) =10/700x10-3=100/7
R%+98696L%=10000/49-----<---xnmnxmmeemmen- ()

(i)  Inthesecondcasez=  +/R2+(2mx75L)?
Q10=500x10" /R2+222066L2) =20
JR?+222066L%) =20




CHAPTER-
07TRANSIEN
TS

Whenever a network containing energy storage elements such as inductor or capacitor is
switched from one condition to another,either by change in applied source or change in
network elements,the response current and voltage change from one state to the other
state.Thetimetakentochangefromaninitialsteadystatetothefinalsteadystateisknown as the
transient period.This response is known as transient response or transients.The response of
the network after it attains a final steady value is independent of time and is
calledthesteady-stateresponse.Thecompleteresponseofthenetwork isdeterminedwith
thehelpofadifferentialequation.

STEADYSTATEANDTRANSIENTRESPONSE

In a network containing energy storage elements, with change in excitation, the currents
and voltages in the circuit change from one state to other state. The behaviour of the
voltageorcurrentwhen it is changedfrom onestatetoanother is calledthetransientstate. The
time taken for the circuit to change from one steady state to another steady state is called
the transient time. The application of KVL and KCL to circuits containing energy
storageelementsresultsindifferential,ratherthanalgebraicequations.whenweconsidera
circuit containing storage elements which are independent of the sources, the response
depends upon the nature of the circuit and is called natural response. Storage elements
deliver their energy to the resistances. Hence, the response changes, gets saturated after
some time,and is referred to asthe transient response. When we consider a source acting
on a circuit, the response depends on the nature of the source or sources.This response is
called forced response. In other words,the complete response of a circuit consists of two
parts; the forced response and the transient response. When we consider a differential
equation, the complete solution consists of two parts: the complementary function and the
particularsolution.Thecomplementaryfunctiondiesoutaftershort interval,andisreferred to as
the transient response or source free response. The particular solution is the steady state
response, or the forced response. The first step in finding the complete solution of a circuit
is to form a differential equation for the circuit. By obtaining the differentialequation,
several methods can be used to find out the complete solution.

DCRESPONSEOFANR-LCIRCUIT

Consideracircuitconsistingofaresistanceandinductanceasshowninfigure.Theinductor in the
circuit is initially uncharged and is in series with the resistor.When the switch S is closed ,we
can find the complete solution for the current.Application of kirchoff’s voltage law to the
circuit results in the following differential equation.

g R
A A"

Dok

I +




Figurel.l

V =Ri + L% ....................................................................... 1.1
dt a1 v

Or—+ I = e e ee— et s e a———eeseseaataeeearee bt eeseaarerreesaans 1.2
e .

Intheaboveequation,thecurrentlisthesolutiontobefoundandVistheappliedconstant
voltage.ThevoltageVisappliedtothecircuitonlywhentheswitchSisclosed. Theaboveequation is a linear
differential equation of first order.comparing it with anon-homogenious differential equation

&
di+Px T 1.3

whosesolutionis

X 8B | Q08 ™ et 1.4

Wherecisanarbitraryconstant.Inasimilarway,wecanwritethecurrentequationas
|IH~' |E

. —i=l e

i=ce™ 2" +e” ) j ez dt

-,

L _{EY,
Hence,l=C& L7+ ... M erresesreesses s erereesree s 1.5

To determine the value of c in equation c, we use the initial conditions .In the circuit shown in
Fig.1.1,theswitchsisclosedatt=0.att=0-,i.e.justbeforeclosingtheswitchs,thecurrentinthe inductor
is zero. Since the inductordoesnotallowsuddenchanges in currents, at t=o+ just after the switch
is closed,the current remains zero.

Thusatt=0,i=0
Substitutingtheaboveconditioninequationc,wehave 0 = c

+

o

Substitutingthevalueofcinequationc,weget

=34

-
i=I;(1- & 7)(where T = Timeconstant =



a1

0 1 2 3 4 85 &8 1C
Figurel.2
=Rt

Equationdconsistsoftwoparts,thesteadystatepart{f, =V/R)andthetransientpart!, ¢ & .

WhenswitchSisclosed,theresponsereachesasteadystatevalueafteratimeintervalas shown in
figure 1.2.

Here the transition period is defined as the time taken for the current to reach its final
or stedy state value from its initial value.In the transient part of the solution, the
quantityL/RisimportantindescribingthecurvesinceL/Risthetimeperiodrequired for the

current to reach its initial value of zero to the final value /,=V/R. The time
=0z
constant of a function i, &< isthetimeatwhichtheexponentofeisunity,wheree is the

base of the natural logarithms.The term L/R is called the time constant and is denoted
by t.

L
So,T= sec
%

Hence,thetransientpartofthesolutionis

AtoneTimeconstant,thetransienttermreaches36.8percentofitsinitialvalue.

S S ¥
Ce 0.368 -

i(1)=- 7€
Similarly,

i(21)=- z&7% =-0.135 F
i(31)=-Le? =-0.0498 -
i(5r)=-%¢-a =-0.0067'7;

After5TCthetransientpartreachesmorethan99percentofitsfinalvalue.



InfigureAwecanfindoutthevoltagesandpowersacrosseachelementbyusingthecurrent.

Voltageacrosstheresistoris

ity
vg=Ri= R* (1-¢ L)

Hence, U=V (1- e?)

Similarly,thevoltageacrosstheinductanceis .=

g £
E

TheresponsesareshowninFigurel.3.

Figurel.3

Powerintheresistoris

] -_ﬁi' .- -_'.“.‘ i
Fe=lgi=V(1-¢20)fl— & Jx-

o2 lily =Rt
=?(1-'2€ L) +& L
Powerintheinductoris
=Rr B =fL
Pr=t1i=V T x - (I— &1 )
w2 =8f =zfi
=—(& L - @ & ’
?(

Theresponsesareshowninfigurel.4.



Figurel.4

Problem:1.1

B0V T~

Figurel.5

AseriesR-L circuitwithR=30QandL=15HhasaconstantvoltageV=50Vappliedatt=0as shown in Fig.
1.5 . determine the current i, the voltage across resistor and across inductor.

Solution:

ByapplyingKirchoff’ svoltageLaw,weget

15 +30i=60

= Z42i=4
Thegeneralsolutionforalineardifferentialequationis i=c
e~y g7t [ FePidt

where P=2 K=4

puttingthe valuesi=c

e~ e [ 4eft(dt

==j=ce %+ 2



Att=0,theswitchsisclosed.

Sincetheinductorneverallowssuddenchangeincurrents.Att=0"thecurrentinthecircuitis zero.
Therefore at t=07,1=0

==0=c+ 2

=Cc=-2

Substitutingthevalueofcinthecurrentequation,wehave i=2(1-

e™ ) A

voltageacrossresistor(Vz)=iR=2(1-e7*%)x30=60(1-e"*%)v

5% =2(1-e729=30% 2e™Fy= 60875

voltageacrossinductor(Vz) =LE=E_

DCRESPONSEOFANR-CCIRCUIT

Consideracircuitconsistingofaresistanceandcapacitanceasshowninfigure.Thecapacitorinthe circuitis
initiallyunchargedand isin series with theresistor.When the switch Sisclosedat t=0,we can find the
complete solution for the current.Application of kirchoff’s voltage law to the circuit results in the
following differential equation.

1 =

E(D)

Figurel.6

V=Ri+]Ef e LS 1.7By

differentiating the above equation, we get

di
0=R E'l'c' ............................................................ 1.8
Or
e 1.
— =020 e 1.9



Equationcisalineardifferentialequationwithonlythecomplementaryfunction.Theparticular solution
for the above equationis zero. The solution for this type of differential equationis

IZC @ BT e 1.10

To determine the value of c in equation c, we use the initial conditions .In the circuit shown in
Fig.theswitchsisclosedatt=0.Sincethecapacitordoesnotallowsuddenchangesinvoltage,it will act
as a short circuitat t=o+ just after the switch is closed.

Sothecurrentinthecircuitatt=0+is z
Thusatt=0,thecurrenti= 7

Substitutingtheaboveconditioninequationc,wehave f: c

Substitutingthevalueofcinequationc,weget

oy

i<

Figurel.7

WhenswitchSisclosed,theresponsedecaysasshowninfigurre. The term
RCis called the time constant and is denoted by t.

So,t=RCsec
After5TCthecurvereaches99percentofitsfinalvalue.

InfigureAwecanfindoutthevoltageacrosseachelementbyusingthecurrentequation. Voltage across

the resistor is



vz=Ri=R %~ ¢RC

Hence, vz=V &%t

Similarly,voltageacrossthecapacitoris ;-

Att=0,voltageacrosscapacitoriszero So, c
=V
And

Vo= Vil — eRC)

TheresponsesareshowninFigure1.8.

V ’ =tlmea F P —
Pr

Ur

0 1 2 3 475 § 7¢C

Figurel.8
Power in the resistor is

Fe=Ugi =V ¢&¢ = - @0
L

=v¢i =V (1- T T



Figurel.9

Problem:1.2

AseriesR-CcircuitwithR=10QandC=0.1FhasaconstantvoltageV=20Vappliedatt=0as shown in Fig.
determine the current i, the voltage across resistor and acrosscapacitor.

it

0V

~0.1F

Figurel.10
Solution:
ByapplyingKirchoff'svoltageLaw,weget
1o,
10i + — [ 1d#=20
1l
Differentiatingw.r.t.tweget

10 £+ =0

Tl Bl

@
—+i=0

==

&

Thesolutionforaboveequationis



i=ce™"

Att=0,theswitchsisclosed.

Sincethecapacitornever allowssuddenchangeinvoltages.Att=0"thecurrentinthecircuitis i =
V/R=20/10=2 A

.Thereforeatt=0,i=2A
===thecurrentequationisi=2e™*
voltageacrossresistor(Vz)=iR=2 e™*x10=202""v

—

voltageacrosscapacitor(Vy)=Vil = &R)=20(1-e"9)V

DCRESPONSEOFANR-L-CCIRCUIT

Consider a circuit consisting of a resistance, inductanceandcapacitance as shown in figure.The
capacitorandinductorinthecircuitisinitiallyunchargedandareinserieswiththeresistor.When the
switch S is closedat t=0, we can find the complete solution for the current.Application of kirchoff’s
voltage law to the circuit results in the following differential equation.

D R

i —=c

Figurel.11

i lp, L
V=Ri+L L 1.12 By

differentiating the above equation, we get

0= R§+Lc€:i;’d?: +£[i= ..................................................................... 1.13
Or
- - 1.
e 1.14
L &



The above equation c is a second orderlinear differential equation with only the complementary
function.Theparticularsolutionfortheaboveequationiszero.Thecharacteristicsequationforthis type of
differential equationis

- 1
DHD =0 oo 1.15

Therootsofequationl.15are

r——

I T By _L
v ) i'\' [T EC

ByassumingX=-"a ndK== J (_I -
Dy =Ry — Kandl;= K1 —K:
Heref{zmaybepositive,negativeorzero.

. . AR
Casel: iz s Fusilivw EET >—

2iv AL
Then,therootsareReal andUnequalandgiveanoverdampedResponseasshowninfigure 1.12.

Thesolutionfortheaboveequationis:i=C; g-#s iy, glia—Haln

A

Figurel.12

-
-

tn

i =
|

<

Casell : K, {5 Negativ [

| =]
[l

Then,therootsareComplexConjugate,andgiveanunder-dampedResponseasshownin figure
1.13.

ey




Figurel.13

Thesolutionfortheaboveequationis:i=e™#{; cogK,t +C; sin Kt)Case I :

y & i
Then,then@g‘iﬁaﬁﬁ‘qué{%ﬂdgh/e?pCritically-dampedResponseasshowninﬁgure 1.14.

if

Figurel.14
Thesolutionfortheaboveequationis:i= ™, + ;%}Problem :
1.3

AseriesR-L-CcircuitwithR=20(,L=0.05Hand C=20pFhasaconstantvoltageV=100V applied at t=0
as shown in Fig. determine the transient currenti.

Figure1l.15

Solution:

ByapplyingKirchoff'svoltageLaw,weget

100=30i+0.05 §+ 2 [idr

& 2@« 1gee

Differentiatingw.r.t.tweget

1
20X 10

0.08¢ ¢ fdet +20 5—+ i=0



=3 a%t/dt? +400 = + 10%i=0
=2 {0+ +400D+10%i=0

Therootsofequationare

e S—
By, Dy= - 28 L (=) -1

=-200 £120007 = 10%
I, =-200+j979.8

0; = -200-j979.8
Thereforethecurrent

i=e %[0y cogK, o+ CoosK 1)

i= ™2 [ co2979.8 0+ Cr aln 979.8¢]A

Att=0,theswitchsisclosed.

Sincetheinductorneverallowssuddenchangeincurrents.Att=0"the currentinthecircuitis zero.
Therefore at t=07,1=0

=i =0=(1) [C; coz @+ C; sin Q]

=3 (3 =0andi=¢" " [C; 2in 97981 JA
Differentiatingw.r.t.tweget

i

i C; [¢725% 9798 cor 9798 ¢ + o205 (2000 8in 979.8¢ ]

Att=0,thevoltageacrosstheinductoris100V =z L%

=100 or §—= 2000

Att=0,§=2000= C,979.8 cogl

Thecurrentequationis



=™ 02 (deln 979.80) 4

ANALYSISOFCIRCUITSUSINGLAPLACETRANSFORMTECHNIQU
E

TheLaplacetransformisapowerfulAnalyticalTechniquethat iswidelyusedtostudythe
behaviorofLinear,Lumpedparametercircuits.LaplaceTransformconvertsatimedomain
functionf(t) toafrequencydomainfunctionF(s) andalsolnverseLaplacetransformation
converts the frequency domain function F(s) back to a time domain function f(t).

L)} =F(S) = d e @ T (E)AE 1o LT1

0 ) (3 e S £ e LT2

o
-

DCRESPONSEOFANR-LCIRCUIT(LTMethod)

LetusdeterminethesolutioniofthefirstorderdifferentialequationgivenbyequationAwhich
isfortheDC responseofaR-LCircuitunderthezeroinitialconditioni.e.currentiszero,i=0at t=0"and
hence i=0at t=0"in the circuit in figure A by the property of Inductance not allowing

thecurrenttochangeasswitchisclosedatt=0.

e R
AN
vV f i ) g L
FigurelLT1.1
v=Ri+L§ ....................................................................... LT1.1

TakingtheLaplaceTransformofbothesidesweget,

EzR 1() + LLSI(S) =1(0) ] -evrrrrreeeemieeeeeeeeeeeesessenseens LT1.2

=% %:R I(s)+L[sI(s)] (I(0)=0:zeroinitialcurrent)

= '?= I(s)[R +L s]




TakingtheLaplacelnverseTransformofbothsidesweget,

== EHI)= 1) = 54

i()=L"1f %}(DividingthenumeratoranddenominatorbyL) putting
o= H/Lwe get

1

it)=L4~ ‘ﬂ'l{ (“ e

i()=L"% :(% - }f;r_} (againputtingbackthevalueof &)

(FERIED
. 3 1 1 - ' =t =Rt rll.-\
i(0)= 174 =(;- Zmam V= 1 e T)=1(1-¢T) (where T, = <)
i()="To(1-¢ 4) (where T = Time constant = i) ....................................................... LT1.4

Itcanbeobservedthatsolutionfori(t)asobtainedbyLaplaceTransformtechniqueissameas that
obtained by standard differential method .

DCRESPONSEOFANR-CCIRCUIT(L.T.Method)
Similarly,

LetusdeterminethesolutioniofthefirstorderdifferentialequationgivenbyequationAwhich is for
the DC response of a R-C Circuit under the zero initial conditioni.e.voltage across capacitor is
zero, V-=0at t=0"and hence V-=0at t=07in the circuit in figure A by the property

ofcapacitancenotallowingthevoltageacrossittochangeasswitchisclosedatt=0.
N E
o My

£(#)

=

FigurelT1.2

V=Ri+%‘|1f BL oo LTL5

TakingtheLaplaceTransformofbothsidesweget,

Z=RI(S) + “[EZH (0) Lo LT16

1 ¥gl

= ——R I(s) +- [ =] (I(0)=0:zeroinitialcharge)

Soatl

‘*‘"I(S) +—]:1(S)[ =1

s



=21(s) =[- = .] T LT 1.7

TakingtheLaplacelnverseTransformofbothsidesweget,

-}

== LHI(s)}=#e) = L"l{w_ccn

rrc
i(t)=1~ 1{ - _.(D1v1d1ngthenumerat0randdenommatorbyRC) putting

B =—we gets
KC

- TR
i) =L I{E_ - Inl

i(t) :; #RC (puttingbackthevalueof &

i(t)=f,eM(where [, =  JS— LT1.8
i()=1,€1) (wheret = Time constant =RC)

Itcanbeobservedthatsolutionfori(t)asobtainedbyLaplaceTransformtechniqueingis same as
that obtained by standard differential method in d.

DCRESPONSEOFANR-L-CCIRCUIT(L.T.Method

i’ =

FigureLT1.3
Similarly,

Let us determine the solution i of the first order differential equation given by equation A which
isfortheDC responseofaR-L-CCircuitunderthezeroinitialconditioni.e.theswitchsisclosed at t=0.at
t=0-,i.e. just before closing the switch s, the current in the inductor is zero. Since the inductor
does not allow sudden changes in currents, at t=o0+ just after the switch is closed,the current
remains zero. also thevoltage across capacitor is zero i.e. V-=0at t=0"and hence V.=0
att=U"inthecircuitinfigurebythepropertyofcapacitancenotallowingthevoltageacrossit V:to

suddenly change as switch is closed at t=0.

1 10, ..
V:Ri+L%+ o L S, LT1.9

TakingtheLaplaceTransformofbothsidesweget,



Z=RI(s) ++ L [51(5) =1(0) T#o 2T (0) T v
== ——R I(s) + L[z I{zg}] += []' 5] (10} = Q:zero initial current &1(0)=0:zeroinitial

charge)
Lr c= =
=3 Z= ()[R +Ls + = = I(s)[ =2

. Cs ve
=2I(S) = [rmorm ) TTIERRRD, | e

Taking the Laplace Inverse Transform of both sides we get,

=> EHIEN=40) = £ )

Ve
}( Dividingthenumeratoranddenominator byLC) i(t) =

it)=L * 13
= "'E %

L4 [J_;Hz]s

i

. :l .
md m—T - Weget i(t) =

£

putting® = —

r‘:l
f-_.l'{ EE!"'E-"I'E“H-'!-I.}
Thedenominatorpolynomialbecomes=[#* -I-2 #5 -I- w?]

- 2w TR gt —_— .
where, 5y 5 = —=— T2 =Py E —wi=—x 1t

Y
where, ®= —; = ﬂ'—and'ﬁ’— W EE =gyt
-'l |.

BypartialFractionexpansion,ofl(s),
oA, E
I(S) = E—_E.-_+ ey

A=(8 — §) K)ls=s,

-
= —
Cag=ag?

B=t5 — &) [{g)ls=s;

Z z
= e —_ L
(Ep=EF (E,=Eg}
¥
T 1 1
L —_ y
I(S)_ |"E _E ( 3 I:E-E:-'

TakingthelnverseLaplaceTransform



i(t)=4 &7 + Ao %F
WhereAjandAsareconstantstobe determinedand fiand $zarentheroots ofthe equation.
Nowdependinguponthevaluesofsiand =z;wehavethreecasesoftheresponse. CASE I :

When the roots are Real and Unequal, it gives an over-damped response.

—_
% het "w.if or = i;Inthiscase,thesolutionisgivenby
()= Ay et Bpe™ ) e, LT1.12
or i(t)=Ay el + Ape®d fort=0

CASEIl:WhentherootsareRealandEqual,itgivesanCritically-dampedresponse.

%= «;Ij_c or = = iy;Inthiscase,thesolutionisgivenby or
()= & (4+ A1) FOrt=0.meiiiiee e LT1.13

CASEIIl:WhentherootsareComplexConjugate,itgivesanunder-dampedresponse. or

= o < «; In this case, the solution is given by

i(t)=Ay #94F + Agg®e® fort=0

= 2w am R o S
where, 5y 5§, = —=— "% - —mIvaT-w

Letw o —w? =4 =1 4 0F —g¥ =jw gwhere j=v=land wa=v" —x*
Hence, i(t)= 27 FE Ay 6190 4 Ay g7V

i =67 |4, + A {20 i, - )

gl gl m =gl }]
2

i(t) =8~ [(& + Ax)commrgt +1 68 — &) slnwgt ]

i(t)=¢~""(B; comamgt +Bo MM argtl. e LT1.14
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CHAPTERS

TWO-PORTNETWORKS

b)

c)
d)

e)

.+i1 —>

y One-Port
Network

L

One port network is a two terminal electrical network in which, current
entersthroughoneterminalandleavesthroughanotherterminal.Resistors,
inductorsandcapacitorsaretheexamplesofoneportnetworkbecauseeach one
has two terminals. One port network representation is shown in the
following figure.

A pair of terminals at which asignal (voltageorcurrent) may enter or leaveis
called a port.
Anetworkhavingonlyonesuchpairofterminalsiscalledaone-portnetwork.
Noconnectionsmaybemadetoanyother nodesinternaltothenetwork.
ByKCL,wethereforehaveii=ii

[ ' ]
+ —>»> <" 4
Y Two-Port
1 V
Network
E I |- i, 5

= two port network is a pair of two terminal electrical network in which, current
entersthroughoneterminalandleavesthroughanotherterminalofeachport. Two port
network representation is shown in the following figure.Type equation here.

» Two-portnetworksareusedto describetherelationship between apairof
terminals

* The analysis methods we will discuss require the following conditions be
met

1. Linearity
2. Noindependentsourcesinsidethenetwork
3. Nostoredenergyinsidethenetwork(zeroinitialconditions)

4, ih1=ihandiz=i

72




TwoPortNetworkParameters

Therearevariousparametersneededtoanalyzeatwoport

network. For examples, , Y parameters,

, & parameters, etc.
Letusdiscussthesenetworkparametersonebyonetogaina better
understanding of their application and uses.

ImpedanceParameters

» Supposethecurrentsandvoltagescanbemeasured.

» Alternatively,ifthecircuitintheboxisknown,ViandVzcanbecalculated
based on circuit analysis.

* Relationshipcanbewrittenintermsoftheimpedanceparameters.

* Wecanalsocalculatetheimpedanceparametersaftermakingtwosetsof
measurements.

Vi=z11l1+z120>
Vo=z21l1+22212

Iftherightportisanopencircuit (I2=0),thenwecan easilysolvefor two of the
impedance parameters: Similarly by open circuiting left hand port (I1=0) we can solve for
the other two parameters.

N

r ] . ] Il:
7. =inputinedenc ) I =0 ZH=fm".n'[?.-"['.'."F‘{T.f:‘_ifs?i'I.FH;JE?['.'E?-‘.‘{E=—"‘fl=0
1= r..purri.ugene..u?-j—‘ )= ]

I’

o | o 4
, = reversefransferimpedence = I—]‘I =0 Z, = outputimpedence =E—-"f. =)
] 1

Z

1
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https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/hybrid-parameters-or-h-parameters/
https://www.electrical4u.com/abcd-parameters-of-transmission-line/

ImpedanceParameterEquivalent

l.(s) —>» < 1:(5)
+ . = +
V.(s) Z,l, V.(S)

Vi=z11l1+z210l7

Vo=z21l1+22212

¢ Onceweknowwhattheimpedanceparametersare,wecanmodel the
behavior of the two-port with an equivalent circuit.
e NoticethesimilaritytoTh eveninandNorton equivalents
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AdmittanceParameters

_: —> 4—|2
y Two-Port
1 Network
‘_ ill - |l2_>

l1=y11Vi+y12Vo
lo=y21Vi+y20Vo
Y, =inputadmittance= |1\sz
v, ?

Y=forwardtransfer adrnittance=|2V|:O

21 2

V,
Y :outputadmittance:hV:q
22 1
Vv,
) I
Y=reversetransferadmittance= —1\/|=O
12 1
Vv,

HybridParameters
Vi=h1ili+h2Vo

lo=ho1l1+h22 V>

hu:inputimpedancezvlvzq
2

l,

h = forwardcurrentratio :IZV:P
21 I 2

1

h,, :reversevoltageratiozﬁl=O| .
Vv,

h,, =output admittance:hlzq .
V,
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Example:

Giventhefollowingcircuit.DeterminetheZparameters.

Iy I,
80 100
AN AN
+ +
v, g 200 § 200 Vs

Z,,=8+20|[30=200

Z,,=20||30=12Q)

V
212:7”1:9
I,
yo20x1x20_g | Thereforez  _8Xl.=8Q=7
1 20+30 2 S B “

TheZparameterequationscanbeexpressedinmatrixformasfollows.
[ Vl—\:er[l 2] 11
Vv z oz Il
L] 2zl
[Vil |20 8jli]]
Iy~ 8 12 1
L] L 1]

Example:
Giventhefollowingcircuit.DeterminetheYparameters.

|
1, 10 2
AN
+ | +
vV, L - S
S V2
- AN —
1Q
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AN :
+ L
1 ~
Vi —— = 3
V, |+
S ( 2 sk
_ A _
10
Tofindy,,
35/ [ 2
V= —'—
2+1s / jJL25+1J |
I
_1 =5+0.5

_ 1 —
So¥117 v Y 117V V=0
1 1

Tofindy andy wereversethingsandshortV

12 21 1
I2
= —=\V,=0
Yo Vl‘ 2
V1:—2|2
I2—0 5S
Yu= ="
Vi
I, 10 L2
A i
short | T '3 +
p—— NS
— W' —
| 1Q
y12 = \=0
V, |t
V=2l y="-0.55
1 12 \z
y:0.5+1
22 S
1
y = _IL V=0 V=I| 2 y:O.5+
22 V2 1 2 2 (@ 22
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Problem1

| Find the Z and Y parameter for the networks shown in figure.

b.
1! » .2:
L3 2
c. (c)
[ 3 :
1
d.
1'e
Solution

a. BYKVL, (Z,+ Z )+ Z 1,=V,
and Z{'jl + (Zf) =t Z(.)Iz = V2
Thus, the Z-parameters are:

m=Z+ 2 = =2,, 2p=(Z,+Z)

1 2
Za Zb

L £ @

-Ii o
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b. By KCL.

=¥ | |

R=2d TP oy | QIR

7 —Z g8
=W _ 1, L,
T--75,+2~L:

Thus, the y-parameters are,

and/f, =

|
Vi1 = Y2 Yp=Yu=—4
/ 732 JI2™ 7

1
Z
Since, AY = ¥V = Va¥y = 0. the z-patameters da not exist
for this netyrark.

to—Z —2

e .2

™

. By KVL
V, =

l"f’:_ v g _!_ l_ ’-(l J—
5 =¥, or,l'l—(r)l,-}»(r]l: and l:—\Y]lH»(Y]f:

Thus, the z-palameteis are,

- |
MEmEy=am=ia

Sirce, Az = 1,25 ~ 2355 = 0, the y-parameters ¢o not exist
for thisnetwaik

d. ByKeL,
L= YW+ (=)= (X, + Y) = V¥

¢

L=+ -, ==Y+ V(Y ,+))
Thus, the y-parameters are:

wmELr L= m=-Yim=h+ L

o —

10> <82
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Problem?2
a. The following equations give the voltages V; and V> at the two
ports of a two port network, V, = 5l1+2l, Vo = 211+l

A loadresistance of 3 Q is connected across poit-2. Calculate the
Input impedance.

b. The z-parameters of a two port networkare z;1=5Q, 25, =2 Q, Z;5
=751 =3 Q. Load resistance of 4 Q is connected across the output
port. Calculate the input impedance.

Solution
a. From the given equations,
Vi=5L+2/ (I}
Vo=211+15 (II)
At the output, Vo = — bR = — 3/

Putting this value in (i1),
—3b=2L+lfilh=—-1/2

Putting in (i), V4 = 5/ + [‘T‘r'] = 41

. Input impedance, Zj, = — =40

~l=

b. [Same as Prob. (a)] Zin = ? =3.50Q
1
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Problem3

i Determine the h-parameter with the following data:

i. with the output terminals short citcuited, V; =25V, =1 A, lx=2
A

ii. with the input terminals open circuited, V; =10V, Vo =50V, [, =2
A

Solution
The A-parameter equations are,

Vi=hi1lh + Ai2V2
Iz = fiz1lqy + ha2V2

a. With output shoirt-circuited, V> = 0, given: V; =25V, [; =1 A and

I =2 A
25 =R »x1
il 2—;;“><1} = .My =255 and b, =2
=g
b. With input open-circuited, /4 = 0, given: V7 = 10V, Vs = 50V and
= =2 A
& 10 = fy, % 50 . N o T
id 2— b xso}’ = hp=z=02and hy;=5zT=0.04T

Thus, the h-parameters are:

256 0.2
[h] =
2 0.04Q7!

Problem4
a. Find the equivalent rmnetwork for the T-network shown in the Fig.
(a).
b. Find the equivalent 7T -netwark for the rnetwork shown in the Fig.
(b).
Lag=25 LZp=2.5C2 Y3=02T
1 2
Zc=5 Y1 =020 Y2 =050
1! 2' 1! 2r
(@) (b)
. Solution

a. Let the equivalent rr-network have Y- as the series admittance
and Ya and Yz as the shunt admittances at poit-1 and poit-2,
respectively.
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‘Now, the z-parameters are given as:
Z11 = (‘Z.»‘f -+ Z() = 7 ‘Q., le = Z?_l — Z(~

2
=

L AZ=(ITxTS5-5%x5)=27.5Q

'.YH‘ZIZE %U
ym=Y21=—Z= 275.5G
5y22=2;=§7_5

Ya= (y1+n2) 227;.55 :1_116
e YB= (V22 + Miz) =%U
.anchz—)hl:%:%G

SQ, 222=(ZB+ Z(-,)z T.SQ

‘Thus, the impedances of the equivalent r-netwoiks are:

550 Io
AN —<—=o
+
110 13.75 Qg Vo
. ® .
Equivalent rr-network
gl onie, |
R
1
Zp=—=13.75Q,;
B YB
1
Ze=—=55Q
C YC'
Zp= Zg=
Ys=10 062592  025Q
1 2 1 2
b.
Y1=020 Yo=050 Ze=1250Q
1’ 2 1t 2'

T-network

Equivalent T-network
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The y-patameteis,

Yn=120 ya=1==10and 13, =150

-SRE DS
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CHAPTER9

LOWPASSFILTERINTRODUCTION

Basically, an electrical filter is a circuit that can be designed to modify,
reshapeorreject allunwantedfrequenciesofanelectricalsignalandacceptorpassonly
thosesignalswantedby thecircuit’s designer.Inother wordsthey“filter-out” unwanted
signals and an ideal filter will separate and pass sinusoidal input signals based upon
their frequency.

In low frequency applications(up to 100kHz),passivefiltersaregenerally
constructed using simple RC(Resistor-Capacitor) networks, while higher frequency
filters (above 100kHz) are usually made from RLC (Resistor-Inductor-Capacitor)
components.

Passive Filters are made up of passive components such as resistors,
capacitorsand inductorsand haveno amplifying elements(transistors,op-amps,etc)so
have no signal gain, therefore their output level is always less than the input.

Filters are so named according to the frequency range of signals that they
allow to pass through them, while blocking or “attenuating” the rest. The most
commonly used filter designs are the:

1. The Low Pass Filter - the low pass filter only allows low frequency signals from

OHz to its cut-off frequency, fc point to pass while blocking those any higher.

o 2. The High Pass Filter - the high pass filter only allows high frequency signals
from its cut-off frequency, fc point and higher to infinity to pass through while

blocking those any lower.

o 3. The Band Pass Filter - the band pass filter allows signals falling within a certain
frequencybandsetupbetweentwopointsto  passthroughwhileblockingboth  the

lower and higher frequencies either side of this frequency band.

e 4 Band Stop Filter - It is so called band-elimination, band-reject, or notch filters;
this kind of filter passes all frequencies above and below a particular range set by

the component values.

SimpleFirst-orderpassivefilters(1storder)canbemadebyconnecting
together a single resistor and a single capacitor in series across an input signal, (Vin)
with the output of the filter, (Vout ) taken from the junction of these two components.
Depending onwhichway aroundweconnect theresistor and thecapacitorwithregards to
the output signal determines the type of filter construction resulting in either a Low
Pass Filter or a High Pass Filter.

As the function of any filter is to allow signals of a given band of
frequencies topass unalteredwhile attenuatingorweakeningallothers those are not
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wanted, we can define the amplitude response characteristics of an ideal filter by using
an ideal frequency response curve of the four basic filter types as shown.

IDEALFILTERRESPONSECURVES

Ap Ap Ar AF
t Low Pass Filter 4 High Pass Filter t BandPass Fiter | Band Stap Fifter
Faszs Stop Stop Pass Stop | Pass | Stop FPass | Stop | Pass
- - i

L A A A

A Low Pass Filter can be a combination of capacitance, inductance or
resistance intended to produce high attenuation above a specified frequency and little or
no attenuation below that frequency. The frequency at which the transition occurs is
called the “cutoff” frequency. The simplest low pass filters consist of a resistor and
capacitor but more sophisticated low pass filters have a combination of series inductors
and parallel capacitors. In this tutorial we will look at the simplest type, a passive two
component RC low pass filter.

THELOWPASSFILTER

A simple passive RC Low Pass Filter or LPF, can be easily made by
connecting together in series a single Resistor with a single Capacitor as shown below.In
this type of filter arrangement the input signal (Vin) is applied to the series combination
(both the Resistor and Capacitor together) but the output signal (Vout ) is taken across
the capacitor only. This type of filter is known generally as a “first-order filter” or “one-
pole filter”, why first-order or single-pole?, because it has only “one” reactive
component, the capacitor, in the circuit.

RCLOWPASSFILTERCIRCUIT

As mentioned Resistor, R I
previously in theCapacitive
Reactance tutorial, the reactance of a
capacitor varies inversely with
frequency, while the value of the Vin Capacitor, C | Vo
resistor remains constant as the
frequency changes. At lowfrequencies
the capacitive reactance, @ S
(Xc)ofthecapacitorwillbevery =

large compared to the resistive value of the resistor, R and as a result the voltage across
the capacitor, Vc will also be large while the voltage drop across the resistor, Vr will be
much lower. At high frequencies the reverse is true with Vc being small and Vr being

large.

While the circuit above is that of anRC Low Pass Filtercircuit, it can also
beclassedasafrequencyvariablepotentialdividercircuitsimilartotheonewelooked
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at in theResistorstutorial. In that tutorial we used the following equation to calculatethe
output voltage for two single resistors connected in series.

1 ™

P.LR.=PR : .
whers, 0y~ g = I, the total resistance of the circuit

WealsoknowthatthecapacitivereactanceofacapacitorinanACcircuit
isgiven as:

OppositiontocurrentflowinanACcircuitiscalledimpedance,symbol Z and
for a series circuit consisting of a single resistor in series with a single capacitor, the
circuit impedance is calculated as:

Then by substituting our equation for impedance above into the resistive
potential divider equation gives us:

RCPOTENTIALDIVIDEREQUATION

i
, FAWS
= \/ . L -

So, by using the potential divider equation of two resistors in series and
substituting for impedance we can calculate the output voltage of an RC Filter for any
given frequency.
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LOWPASSFILTEREXAMPLE

A Low Pass Filter circuit consisting of a resistor of 4k7(} in series with a
capacitor of 47nF is connected across a 10v sinusoidal supply. Calculate the output
voltage (Vout ) at a frequency of 100Hz and again at frequency of 10,000Hz or 10kHz.

VoltageOQutputata Frequencyof100Hz.

1 4
N . — 1 J—
Aal T — -
ikl W
=~ TR
r — %7 Faae Y S LY NS —
\ TR L — 0 D o
'S T T - i I 3 g
W £ 2 ] o= md | mmsy ";!
JRS+X: A 47007 +33863

T

S i
b 219 /M
17 — 7 <h — 1 ~SJoly — Ny T Qe
Vo 0 YVopg Y — V.S 1OV
oo o a2 | =2 | Py P
o) B T A Af G U T 500
¥ A 5
FREQUENCYRESPONSE

We can see from the results above that as the frequency applied to the RC network
increasesfrom 100Hz to 10 kHz,thevoltagedropped acrossthecapacitorand therefore the
output voltage (Vout) from the circuit decreases from 9.9v to 0.718v.

Byplottingthenetworksoutputvoltageagainstdifferentvaluesofinputfrequency, the
Frequency Response Curve or Bode Plot function of the low pass filter circuit can be
found, as shown below.
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Frequency Response of a 1st-order Low Pass Filter

Coner
Freguency
. Yout d )
Gain — 20 log Vin J"C
“assBsnd | Stop Band
0dB
343 +—-3d3 (457
Frequenc
R & / Slope =
- esponse -20¢B/Decade
= s
e ¥
Bandwidth
- -
Plase fuiL=) Frequency iHz)
0= ‘ (Logarith nic Scaled
445"
FPhasz
Shift |
90° :

Frequency IHz)

The Bode Plotshows the Frequency Response of the filter to be nearly flat
for low frequencies and the entire input signal is passed directly to the output, resulting
in a gain of nearly 1, called unity, until it reaches its Cut-off Frequency point (fc). This is
because the reactance of the capacitor is high at low frequencies and blocks any current
flow through the capacitor.

After this cut-off frequency point the response of the circuit decreases to
zero at a slope of -20dB/ Decade or (-6dB/Octave) “roll-off”. Note that the angle of the
slope, this -20dB/ Decade roll-off will always be the same for any RC combination.

Any high frequency signals applied to the low pass filter circuit above this
cut-off frequency point will become greatly attenuated, that is they rapidly decrease.
This happens because at very high frequencies the reactance of the capacitor becomesso
low that it gives the effect of a short circuit condition on the output terminals resulting
in zero output.

Then by carefully selecting the correct resistor-capacitor combination, we
can create a RC circuit that allows a range of frequencies below a certain value to pass
through the circuit unaffected while any frequencies applied to the circuit above thiscut-
off point to be attenuated, creating what is commonly called a Low Pass Filter.
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For this type of “Low Pass Filter” circuit, all the frequencies below thiscut-
off, fc point that are unaltered with little or no attenuation and are said to be in the
filters Pass band zone. This pass band zone also represents the Bandwidth of the filter.
Any signal frequencies above this point cut-off point are generally said to be inthe filters
Stop band zone and they will be greatly attenuated.

This “Cut-oft”, “Corner” or “Breakpoint” frequency is defined as being the
frequency point where the capacitive reactance and resistance are equal, R = Xc = 4k7().
When this occurs the output signal is attenuated to 70.7% of the input signal value or -
3dB (20 log (Vout/Vin)) of the input. Although R = Xc, the output is not half of the input
signal. This is because it is equal to the vector sum of the two and is therefore 0.707 of
the input.

As the filter contains a capacitor, the Phase Angle(®)oftheoutputsignal
LAGS behindthatoftheinputandatthe-3dBcut-offfrequency(fc)andis- 450
outofphase.Thisis dueto thetimetaken to chargetheplates ofthecapacitor as the input
voltage changes, resulting in the output voltage (the voltage across the capacitor)
“lagging” behind that of the input signal. The higher the input frequency applied to the
filter the more the capacitor lags and the circuit becomes more and more“out ofphase”.

The cut-off frequency point and phase shift angle can be found by using
the following equation:

CUT-OFFFREQUENCYANDPHASESHIFT

okt RF L BE

Then for our simple example of a “Low Pass Filter” circuit above, the cut-
off frequency (fc) is given as720Hz with an output voltage of 70.7% of the input voltage
value and a phase shift angle of -45¢°.

HIGHPASSFILTERS

A High Pass Filter or HPF, is the exact opposite to that of the previously
seen Low Pass filter circuit, as now the two components have been interchanged with
the output signal ( Vout ) being taken from across the resistor as shown.

Where as the low pass filter only allowed signals to pass below its cut-off
frequency point, fc, the passive high pass filter circuit as its name implies, only passes
signals above the selected cut-off point, fc eliminating any low frequency signals from
the waveform. Consider the circuit below.
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THEHIGHPASSFILTERCIRCUIT

Capacltor C

A —
v\ |

Wi
l Resistor, R $ WVem
° -~

o

In this circuit arrangement, the reactance of the capacitor is very high
atlowfrequenciessothecapacitoractslikeanopencircuitandblocksanyinputsignals at Vin
until the cut-off frequency point (fc) is reached. Above thiscut-offfrequency point the
reactance of the capacitor has reduced sufficiently as to now act more like a short circuit
allowing the entire input signal to pass directly to the output as shown below in the
High Pass Frequency Response Curve.

FREQUENCYRESPONSEOFA1STORDERHIGHPASSFILTER.

Gain (dB) = 20 log YoUt

Vin
Stop Band : Pass Band
¥ Y i
0dB | — — — — — I—
_ o
_____ Frequency
Response
; Slope =
a | +20dBDecade
| Bandwidth
| - -
-dB
Phase fec(HP) Frequency [Hz)
iLogarithmic Scale]
+90°
+45°
Uﬂ

Frequency (Hz)
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TheBodePlotor FrequencyResponse Curve abovefor a High Pass filter is
the exact opposite to that of a low pass filter. Here the signal is attenuated or damped at
low frequencies with the output increasing at +20dB/Decade (6dB/Octave) until the
frequency reaches thecut-off point ( fc) where again R = Xc. It has a response curve that
extends down from infinity to the cut-off frequency, where the output voltage amplitude
is 1/v/2 = 70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input value.

Also we can see that the phase angle (®) of the output signal LEADS thatof
the input and is equal to+45°at frequency fc. Thefrequency responsecurvefor a high pass
filter implies that the filter can pass all signals out to infinity. However in practice, the
high pass filter response does not extend to infinity but is limited by the electrical
characteristics of the components used.

The cut-off frequency point for a first order high pass filter can be found
using the same equation as that of the low pass filter, but the equation for the phaseshift
is modified slightly to account for the positive phase angle as shown below.

CUT-OFFFREQUENCYANDPHASESHIFT

P

1
fe=
e FRE WA -
A
15 PR o § IV & T [ !
Fragse Syl @ = drcidil -

Thecircuitgain,AvwhichisgivenasVout/Vin(magnitude)andiscalculatedas:

L9

L7 R R
i L] LR s
M, = — = — - =
¥ . N L i

1R af M + Al

il

W o~

atlow f: Xc — o, Vout=0
athigh f: Xc — 0, Vout=Vin

HIGHPASSFILTEREXAMPLE.

Calculate the cut-off or “breakpoint” frequency ( fc ) for asimple highpass
filter consisting of an82pF capacitor connected in series with a 240k(} resistor.

\
!

é
o
i
l
|
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BANDPASSFILTERS

The cut-off frequency or fc point in a simple RC passive filter can be
accurately controlled using just a single resistor in series with anon-polarized capacitor,
and depending upon which way around they are connected either a low pass or a high
pass filter is obtained.

One simple use for these types of Passive Filters is in audio amplifier
applications or circuits such as in loudspeaker crossover filters or pre-amplifier tone
controls. Sometimes it is necessary to only pass a certain range of frequencies that do
not begin at OHz, (DC) or end at some high frequency point but are within a certain
frequency band, either narrow or wide.

By connectingor “cascading” togetherasingleLow PassFilter circuitwith a
High Pass Filter circuit, we can produce another type of passive RC filter that passes a
selected range or “band” of frequencies that can be either narrow or wide while
attenuating all those outside of this range. This new type of passive filter arrangement
produces a frequency selective filter known commonly as a Band Pass Filter or BPF for
short.

BANDPASSFILTERCIRCUIT

Unlike alow pass filterthat only passsignals of a low frequency range
orahighpassfilterwhichpasssignalsofahigherfrequencyrange,aBandPass Filters passes
signals within a certain “band” or “spread” of frequencies without distorting the input
signal or introducing extra noise. This band of frequencies can be any width and is
commonly known as the filters Bandwidth.

Bandwidth is commonly defined as the frequency range that exists
between two specified frequency cut-off points ( fc ), that are 3dB below the maximum
centre or resonant peak while attenuating or weakening the others outside of these two
points.

Then for widely spread frequencies, we can simply define the term
“bandwidth”, BW as being the difference between the lower cut-off frequency (fcLower )
and the higher cut-off frequency ( fcuicuer ) points. In other words, BW = fg- fi. Clearly
for a pass band filter to function correctly, the cut-off frequency of the low pass filter
must be higher than the cut-off frequency for the high pass filter.

The“ideal”BandPassFiltercanalsobe usedto isolateorfilteroutcertain
frequenciesthatliewithinaparticularbandoffrequencies,forexample,noise
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cancellation. Band pass filters are known generally as second-order filters, (two-pole)
because they have “two” reactive component, the capacitors, within their circuit design.
One capacitor in the low pass circuit and another capacitor in the high pass circuit.

FrequencyResponseofa2zndOrderBandPassFilter.

_ Vout

Gain vin f,: ch
[ Btop Elandr'} { FPass Band ) | Stop Band)
0dB
-3dB +— -3dB (45%)
Frequency Response :
= | Slope =
o Bandwidth -
2 - andwi > | 20dB/Decade
° |
|
\ Slope = | |
+20dBDecada :
| |
4B ! |
- JL Sfeenter b Frequency {Hz)
Phase [ [Logarithmic Scale]
+30° :
[
[
|
0° ' -
[ Frequency
Phase :
Shift |
-a0°

The Bode Plot or frequency response curve above shows the
characteristics of the band pass filter. Here the signal is attenuated at low frequencies
with the output increasing at a slope of +20dB/Decade (6dB/Octave) untilthe frequency
reaches the “lower cut-off” point fi.. At this frequency the output voltage is again 1/V2 =
70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input.

The output continues at maximum gainuntil itreaches the “upper cut-off”
point fywhere the output decreases at a rate of -20dB/Decade (6dB/Octave)attenuating
any high frequency signals. The point of maximum output gain is generally the
geometric mean of the two -3dB value between the lower and upper cut-off points and
is called the “Centre Frequency” or “Resonant Peak” value fr. This geometric mean value
is calculated as being fr2= fupper)X f(LOWER).-

A band pass filter is regarded as a second-order (two-pole) type filter
because it has “two” reactive components within its circuit structure, then the phase
anglewillbetwicethatofthepreviouslyseenfirst-orderfilters,i.e.,180°.Thephase
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angle of the output signal LEADSthat of the input by+90°up to the centre or resonant
frequency,frpoint were itecbmes “zero” degrees (0°) or “in-phase” and then changes to
LAG the input by -90°as the output frequency increases.

Theupperandlower cut-offfrequencypointsfor abandpassfilter can be
foundusingthesameformulaasthatfor boththelowandhighpassfilters,For example.

-.
s

= H

T — : Ir

JC= m5———~

= FI7
e § R D

P ]
e

o

)

.y

I

Thenclearly,thewidthofthepassbandofthefiltercanbecontrolledbythe positioning of
the two cut-off frequency points of the two filters.

BandPassFilterExample

Asecond-order bandpassfilter istobeconstructedusingRC components that
will only allow a range of frequencies to pass above 1kHz (1,000Hz)
andbelow30kHz(30,000Hz).Assumingthatboththe resistors havevalues of10kQ’s,
calculatethevaluesofthet wo capacitorsrequired.

Siggpﬂuﬁ—h Low-pass filter |—| High-pass filter —*gﬂﬁgﬁ{

blocks frequencies blocks frequencies
that are too high that are too low

TheHighPassFilterStage

The value of thecapacitor C1 required to give a cut-off frequency fi. of
1kHz with a resistor value of10k( is calculated as:

Fa i
£ 7

1
1|

o
0
= ]

o = et f B

mic R P +1 000

£E 7 irs i L =i aF By wF i 5

Then, the values 0ofR1 andC1required for the high pass stage to give a cut-
off frequency of 1.0kHz are: R1 = 10kQ’s and C1 = 15nF.

TheLowPassFilterStage

Thevalueofthecapacitor C2 requiredtogiveacut-offfrequency fhof30kHzwitha resistor value
0f10Kk(Q is calculated as:
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Then,thevaluesofR2and C2Zrequiredforthelowpassstage to givea cut- off
frequency of 30kHz are, R = 10kQ’s and C = 510pF. However, the nearest preferred
value of the calculated capacitor value of 510pF is 560pF so this is used instead.

With the values of both the resistances R1 and R2 given as 10k(), and the
twovaluesofthecapacitorsC1 and C2 foundforthehighpassandlowpassfilters as 15nF and
560pF respectively, then the circuit for oursimplepassive BandPassFilter is given as.

CompletedBandPassFilterCircuit

High P ass Filter Stage Low Pass Filter Stage

il Rz =10K0O

—\\V o
R1=10KQ $ C2=560pF ___ Vaow
T O

BandPassFilterResonantFrequency

Win

O )
——— | |

We can also calculate the “Resonant” or “Centre Frequency” (fr) point of the band pass
filter were the output gain is at its maximum or peak value. This peak value is not the
arithmetic averageof theupperand lower -3dBcut-off pointsasyoumight expect but is in
factthe “geometric” or mean value. This geometricmeanvalueiscalculatedas being fr 2=
fcuppEr)X feLower)for example:

CentreFrequencyEquation

-

of

T CL S s

|

ST
.

[

e Where,fristheresonantorcentrefrequency
e fListhelower-3dBcut-offfrequencypoint

e fuistheupper-3dbcut-offfrequencypoint

And in our simple example above, the calculated cut-off frequencies were
found tobe f.=1,060Hzandfy=28,420Hzusingthe filtervalues.

Then by substituting these values into the above equation gives a central
resonant frequency of:
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Band-stop filters

It is so calledband-elimination,band-reject, ornotch filters; this kind of
filter passes all frequencies above and below a particular range sety the component
values. Not surprisingly, it can be made out of a low-pass and a high-pass filter, just like
the band-pass design, except that this time we connect the two filter sections in parallel
with each other instead of in series. (Figure below)

passes |low frequencies

—| Low-pass filter | —

Signal __,

T
imput l

. Signal
ou%put

» | High-pass filter . T

passes high frequencies

Systemlevelblockdiagramofaband-stopfilter.

Constructed using two capacitive filter sections, it looks something like

(Figure below).
Rl R]
VA VA
I S |
| |l
source R-.'i % Rload
B 5";, \} 7 }\?._“Zv‘f
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ButterworthFilter

A Butterworth filter is a type of signal processing filter designed to have a frequency
responseasflataspossibleinthepassband.HencetheButterworthfilterisalsoknownas
“maximally flat magnitude filter”. It was invented in 1930 by the British engineer and
physicist Stephen Butterworth in his paper titled “On the Theory of Filter Amplifiers”.
The frequency response of the Butterworth filter is flat in the passband (i.e. a
bandpassfilter)androll-offstowardszerointhestopband. Therateofroll-
offresponsedependson the order of the filter. The number of reactive elements used in the
filter circuit will decide the order of the filter.

The inductorand capacitorare reactive elements used in filters. But in the case of
Butterworthfilteronlycapacitorsareused. So,thenumberofcapacitorswilldecidethe order of
the filter.

Here,wewilldiscusstheButterworthfilterwithalowpassfilter.Similarly,the highpassfiltercan
be designed by just changing the position of resistanceand capacitance.
ButterworthLowPassFilterDesign

While designingthe filter, the designer tries to achieve a response near to the ideal filter.
It is very difficult to match results with the exact ideal characteristic. We need to use
complexhigher-order If youincrease theorder of thefilter,thenumber of cascade stages
with the filter is also increased. But in practice, we cannot achieve Butterworth’s ideal
frequency response. Because it produces excessive ripple in the passband.In Butterworth
filter, mathematicallyitispossibletogetflatfrequencyresponsefromOHztothecut-off
frequencyat -3dB with no ripple. If the frequency is more than the cut-off frequency, it
will roll-off towards zero with the rate of -20 dB/decade for the first-order filter.If you
increase the order of the filter, the rate of a roll-off period is also increased. And for
second-order, it is -40 dB/decade. The quality factorfor the Butterworth filter is 0.707.
ThebelowfigureshowsthefrequencyresponseoftheButterworthfilterforvarious orders of
the filter

10 Gain dB 907 Corner
1st-order

Mazximally flat / 2nd-order
3rd-order

etc.
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|deal

30| “Brick wall®

Response
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FrequencyResponseofButterworthFilterThegeneralizedformoffrequencyresponsefor nth-
order Butterworth low-pass filter is;

. 1
HI.J.';_L-*} p—

'

Where,
n=order of thefilter,
w=operatingfrequency(passbandfrequency)ofcircuit
oc=Cut-offfrequency

e=maximumpassbandgain=~Amax

Thebelowequationisusedtofindthevalueofe.

Where,

H: =minimumpassband gain
Ho=maximumpassbandgain
First-orderl owpassButterworthFilter

The lowpass filter is a filter thatallows the signal with the frequency is lower than the
cutoff frequency and attenuates the signals with the frequency is more than cutoff
frequency.Inthefirst-orderfilter,thenumberofreactivecomponentsisonlyone.The below
figure shows the circuit diagram of the first-order lowpass Butterworth filter.

H
o §_n
2 a

: . I

Fig. 2.79 First order high pass Butterworth filter




The low pass Butterworth filter is an active Low pass filteras it consists of the op-amp.
Thisop-ampoperatesonnon-invertingmode.Hence,thegainofthefilterwilldecideby the
resistorRiand Rr. And the cutoff frequency decides by R and C.

Now,ifyouapplythevoltagedividerruleatpointVaandfindthevoltageacrossa capacitor. It is
given as;

v, = —2%C
i — _j_:’ipt'
ilamse)
-I'nl — - .1.-:']:'
R—g1 ETll't" I
1';1 - . F.{;’é' — JI. 13;:;-.
Il-l! — F s

1 — zfrrr_.'?r‘-

1":":-;
1+ 32m f RC

.II:

Becauseofthe non-invertingconfigurationofanop-amp,

. Ry
v, = (l | R_i) v,

WHERE
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Thebelowfigureshowsthefrequencyresponseoffirst-orderlowpassButterworth filter.
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Fig. 2.75 Frequency response

Second-orderButterworthFilter

The second-order Butterworth filter consists of two reactive components. The
circuitdiagramofasecond-orderlowpassButterworthfilterisasshowninthe below

figure.

R, B
o AN e

Rz? Ry " op-amp —ov

+ @
wenunngtl b
Vin %) c, T (;31 B

Fig. 2.76 Second order low pass butterworth fliter

Inthis type of filter, resistor R and Rgare the negative feedback ofop-amp. And the
cutoff frequency of the filter decides by R», Rs, C», and C3.The second-order
lowpass Butterworth filter consists oftwo back-to-back connected RC networks.
AndR_istheloadresistance. First-orderandsecond-orderButterworthfiltersare very
important. Because we can get higher-order Butterworth filter by just cascading of
the first-order and second-order Butterworth filters.




Let’sanalysethecircuitofsecond-orderButterworthfilter,

ApplyKirchhoff’sCurrentLawatpointVi.

Using potential divider rule af point V,

Vi
1 + 8537

Put the value of V1 in equation-(1) v — v (1 — sy
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Because of the non-inverting configuration of an op-amp,

Vo= A,V

Where,
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Rearrangethisequation,
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Comparethisequationwiththestandard formtransfer functionforsecond-order
Butterworth filter. And that is,

Vo A

= — J . G
Vin 824 2(wes + ws

Bycomparingaboveequations,wecanfindtheequationofcutofffrequencyand overall
gain for the second-order lowpass Butterworth filter.

Thegainoffilteris,
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mar RJ le r\.-’ r.d
And the Cutoff frequency of filter is,
2 1
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Now, if we consider the value of B3 is same as Bz and the value of C1 s same as Cg
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Now if we put above values in transfer function,
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From above equation, the quality factor Q is equal to,
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Wecansaythat,thequalityfactorisonlydependsonthe gainoffilter. Andthe value of
gain should not more than 3. If the value of gain is more than 3, the system will be
unstable.

Thevalueofqualityfactoris0.707fortheButterworthfilter. And ifweputthis value
inequation ofquality factor, we can find the value of gain.

(.707 =

3~ A;
A; = 1.586
1 + Ry Ry = 1.586

R;R; = 0.586

Whiledesigningthesecond-orderButterworthfilteraboverelationmustbesatisfy.
Thefrequencyresponseofthisfilterisasshowninbelowfigure.
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Third-orderlowpassButterworthfiltercandesignbycascadingthefirst-orderand
second-order Butterworth filter.




Thebelowfigureshowsthecircuitdiagramofthethird-orderlowpassButterworthfilter.
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Third-orderLowPassButterworthFilter

Inthisfigure,thefirstpartshowsthe first-orderlowpassButterworthfilter,andthe second part
shows the second-order lowpass Butterworth filter.

But in this condition, the voltage gain of the first part is optional and itcan be set atany
value.Therefore,thefirstop-ampisnottakingpartinvoltage gain.Hence,thefigurefor the
third-order low pass filter can be expressed as below figure also;
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Second-order Low pass Filter :
: Low pass Filter
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Thevoltage gainofasecond-orderfilteraffectsthe flatnessoffrequencyresponse. If the
gain of the second-order filter is kept at 1.586, the gain will down 3db for each
part. So, the overall gain will down 6dB at the cutoff frequency.

Byincreasingthe voltage gainofthesecond-orderfilter,wecanoffsetthe cumulative
loss of voltage gain.

Inthethird-orderButterworthfilter,therateofaroll-offperiod is-60dB/decade. And the
frequency response ofthis filter is nearer to the ideal Butterworth filter compared
to the first and second-order filters. The frequ

Gain (dB)
Ideal Response
Ay
..................... - Rate Of ro'l-oﬂ
: = -60dB/decade
(—F‘assband—-}g ' EAQUuU :
T (H2)

(frequencyresponseofthisfilterisasshowninthebelowfigure.)

Fourth-orderl owpassButterworthFilter

Fourth-order Butterworth filter is established by the cascade connection of two
second-orderlowpassButterworthfilters. Thecircuitdiagramofthe fourth-order
lowpass Butterworth filter is as shown in the below figure.
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