UNIT-I

Mathematical Modeling of Physical Control systems
Concept of control system

A control system manages commands, directs or regulates the behavior of other
devices or systems using control loops. It can range from a single home heating
controller using a thermostat controlling a domestic boiler to large Industrial control
systems which are used for controlling processes or machines. A control system is a
system, which provides the desired response by controlling the output. The following
figure shows the simple block diagram of a control system.
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Examples - Traffic lights control system, washing machine

Traffic lights control system is an example of control system. Here, a sequence of input
signal is applied to this control system and the output is one of the three lights that will be
on for some duration of time. During this time, the other two lights will be off. Based on
the traffic study at a particular junction, the on and off times of the lights can be
determined. Accordingly, the input signal controls the output. So, the traffic lights control

system operates on time basis.

Classification of Control Systems

Based on some parameters, we can classify the control systems into the following ways.

Continuous time and Discrete-time Control Systems

e Control Systems can be classified as continuous time control systems and discrete
time control systems based on the type of the signal used.

e In continuous time control systems, all the signals are continuous in time.
But, in discrete time control systems, there exists one or more discrete time

signals.

SISO and MIMO Control Systems

e Control Systems can be classified as SISO control systems and MIMO control
systems based on the number of inputs and outputs present.
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e SISO (Single Input and Single Output) control systems have one input and one
output. Whereas, MIMO (Multiple Inputs and Multiple Outputs) control systems
have more than one input and more than one output.

Open Loop and Closed Loop Control Systems
Control Systems can be classified as open loop control systems and closed loop control

systems based on the feedback path.

In open loop control systems, output is not fed-back to the input. So, the control action
is independent of the desired output.

The following figure shows the block diagram of the open loop control system.
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Here, an input is applied to a controller and it produces an actuating signal or controlling
signal. This signal is given as an input to a plant or process which is to be controlled. So,
the plant produces an output, which is controlled. The traffic lights control system which
we discussed earlier is an example of an open loop control system.

In closed loop control systems, output is fed back to the input. So, the control action is
dependent on the desired output.

The following figure shows the block diagram of negative feedback closed loop control system.
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The error detector produces an error signal, which is the difference between the input and
the feedback signal. This feedback signal is obtained from the block (feedback elements)
by considering the output of the overall system as an input to this block. Instead of the
direct input, the error signal is applied as an input to a controller.

So, the controller produces an actuating signal which controls the plant. In this
combination, the output of the control system is adjusted automatically till we get the
desired response. Hence, the closed loop control systems are also called the automatic
control systems. Traffic lights control system having sensor at the input is an example of a
closed loop control system.

The differences between the open loop and the closed loop control systems are mentioned
in the following table.

{pen Loop Control Systems Closed Loop Control Systems
Control action is independent of the Control action is dependent of the
desired output. desired output.

Feedback path is not present. Feedback path is present.

These are alzo called as non-feedback These are also called as feedback
control systems. control systems.

Easy to design, Difficult to design.

These are economical, These are costlier,

Inaccurate., Accurate,

If either the output or some part of the output is returned to the input side and utilized as
part of the system input, then it is known as feedback. Feedback plays an important role in
order to improve the performance of the control systems. In this chapter, let us discuss the
types of feedback & effects of feedback.

Types of Feedback
There are two types of feedback -

o Positive feedback

e Negative feedback



Positive Feedback

The positive feedback adds the reference input, R(s)R(s) and feedback output. The
following figure shows the block diagram of positive feedback control system
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he concept of transfer function will be discussed in later chapters. For the time being,
consider the transfer function of positive feedback control system is,

T = 1—?"}{ (Equation 17

Where,
e T is the transfer function or overall gain of positive feedback control system.
e Gisthe openloop gain, which is function of frequency.

e His the gain of feedback path, which is function of frequency.

Negative Feedback

Negative feedback reduces the error between the reference input, R(s)R(s) and system
output. The following figure shows the block diagram of the negative feedback control
system.
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Transfer function of negative feedback control system is,

T = 1+f"H (Equation 2

Where,

e T is the transfer function or overall gain of negative feedback control system.
e Gisthe open loop gain, which is function of frequency.
o His the gain of feedback path, which is function of frequency.

The derivation of the above transfer function is present in later chapters.
Effects of Feedback
Let us now understand the effects of feedback.

Effect of Feedback on Overall Gain

From Equation 2, we can say that the overall gain of negative feedback closed loop
control system is the ratio of 'G' and (1+GH). So, the overall gain may increase or
decrease depending on the value of (1+GH).

e Ifthe value of (1+GH) is less than 1, then the overall gain increases. In this case, 'GH'
value is negative because the gain of the feedback path is negative.

o Ifthe value of (1+GH) is greater than 1, then the overall gain decreases. In this case,
'GH' value is positive because the gain of the feedback path is positive.

In general, 'G' and 'H' are functions of frequency. So, the feedback will increase the overall
gain of the system in one frequency range and decrease in the other frequency range.

Effect of Feedback on Sensitivity

Sensitivity of the overall gain of negative feedback closed loop control system (T) to the
variation in open loop gain (G) is defined as
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Where, 3T is the incremental change in T due to incremental change in G.

We can rewrite Equation 3 as
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Co partial differentiation with respect to G on both sides of Equation 2,

ar _ @ G  (l4+GH).1-G(H) 1 .
ac F( ‘1+G"H) (1+GH) (1+GH) {Equation 5)

From Equation 2, vou will get
% =1+GH (Equation &)

Substitute Equation 5 and Equation & in Equaticn <.
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So, we got the sensitivity of the overall gain of closed loop control system as the
reciprocal of (1+GH). So, Sensitivity may increase or decrease depending on the value of

(1+GH).

o If the value of (1+GH) is less than 1, then sensitivity increases. In this case, 'GH'
value is negative because the gain of feedback path is negative.

o If the value of (1+GH) is greater than 1, then sensitivity decreases. In this case, 'GH'
value is positive because the gain of feedback path is positive.

In general, 'G' and 'H' are functions of frequency. So, feedback will increase the sensitivity
of the system gain in one frequency range and decrease in the other frequency range.
Therefore, we have to choose the values of 'GH' in such a way that the system is insensitive
or less sensitive to parameter variations.

Effect of Feedback on Stability

e A system is said to be stable, if its output is under control. Otherwise, it is said to be
unstable.

e In Equation 2, if the denominator value is zero (i.e.,, GH = -1), then the output of the
control system will be infinite. So, the control system becomes unstable.

Therefore, we have to properly choose the feedback in order to make the control system
stable.

Effect of Feedback on Noise

To know the effect of feedback on noise, let us compare the transfer function relations
with and without feedback due to noise signal alone.

Consider an open loop control system with noise signal as shown below.
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The open loop transfer function due to noise signal alone is

C(s)

N G, (Equation 7)

It is obtained by making the other input R(s) equal to zero,

N(s)

R(s) + b c(s)

H e

The closed loop transfer function due to noise signal alone is

Cls) Go |
N(s) — 14+G,GH (Equation )

It iz obtained by making the other input R(s) equal to zero.
Compare Equation 7 and Equation £,

In the closed loop control system, the gain due to noise signal is decreased by a
factor of (1 4+ GoGyH) provided that the term (1 + GoGyH) is greater than
one.



The control systems can be represented with a set of mathematical equations
known as mathematical model. These models are useful for analysis and design of
control systems. Analysis of control system means finding the output when we know the
input and mathematical model. Design of control system means finding the mathematical
model when we know the input and the output.

The following mathematical models are mostly used.

o Differential equation model
e Transfer function model

e  State space model



Block Diagrams

Unit- II
TRANSFER FUNCTION REPRESENTATION

Block diagrams consist of a single block or a combination of blocks. These are used to

represent the control systems in pictorial form.

Basic Elements of Block Diagram

The basic elements of a block diagram are a block, the summing point and the take-off

point. Let us consider the block diagram of a closed loop control system as shown in the

following figure to identify these elements.
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The above block diagram consists of two blocks having transfer functions G(s) and H(s). It
is also having one summing point and one take-off point. Arrows indicate the direction of
the flow of signals. Let us now discuss these elements one by one.

Block

The transfer function of a component is represented by a block. Block has single input and

single output.

The following figure shows a block having input X(s), output Y(s) and the transfer function G(s).
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Transfer Function, G(s) =

Summing Point

The summing point is represented with a circle having cross (X) inside it. It has two or
more inputs and single output. It produces the algebraic sum of the inputs. It also
performs the summation or subtraction or combination of summation and subtraction of
the inputs based on the polarity of the inputs. Let us see these three operations one by
one.

The following figure shows the summing point with two inputs (A, B) and one output (Y).
Here, the inputs A and B have a positive sign. So, the summing point produces the output,
Y as sum of Aand Bi.e.= A+ B.

A & 7 Y=A+B

B

B

The following figure shows the summing point with two inputs (A, B) and one output (Y).
Here, the inputs A and B are having opposite signs, i.e,, A is having positive sign and B is
having negative sign. So, the summing point produces the output Y as the difference of A
andBi.e



Y=A+(-B)=A-B.

B

The following figure shows the summing point with three inputs (A, B, C) and one output
(Y). Here, the inputs A and B are having positive signs and C is having a negative sign. So,

the summing point produces the output Y as

Y=A+B+(-C)=A+B-C.

Take-off Point

The take-off point is a point from which the same input signal can be passed through more
than one branch. That means with the help of take-off point, we can apply the same input
to one or more blocks, summing points. In the following figure, the take-off point is used to

connect the same input, R(s) to two more blocks.
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In the following figure, the take-off point is used to connect the output C(s), as one of the

inputs to the summing point.
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Block diagram algebra is nothing but the algebra involved with the basic elements of the block
diagram. This algebra deals with the pictorial representation of algebraic equations.

Basic Connections for Blocks

There are three basic types of connections between two blocks.

Series Connection

Series connection is also called cascade connection. In the following figure, two blocks
having transfer functions G1(s)G1(s) and G2(s)G2(s) are connected in series.



X(s) Z(s) Y(s)
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For this combination, we will get the output Y(s) as
Y(s) = Ga(s)Z(s)
where, Z(s) = G1(s)X(s)
= Y(s) = G2(5)[G1(5) X (s)] = G1(5)Ga(s) X (s)
= Y(s) = {G1(5)G2(s) } X(5)

Compare this equation with the standard form of the output equation,

Yis) = G(s) X(s). Wwhere, GG(s) = GG1(s)Ga(s).

That means we can represent the series connection of two blocks with a single block. The
transfer function of this single block is the product of the transfer functions of those two
blocks. The equivalent block diagram is shown below.

X(s) Y(s)
—  Gi(5)Gz(s) pP—»

Similarly, you can represent series connection of ‘n’ blocks with a single block. The
transfer function of this single block is the product of the transfer functions of all those n’
blocks.

Parallel Connection

The blocks which are connected in parallel will have the same input. In the following
figure, two blocks having transfer functions G1(s)G1(s) and G2(s)G2(s) are connected in
parallel. The outputs of these two blocks are connected to the summing point.
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Y(s) = Yi(s) + Ya(s)

Y1 (s) = G1(s) X(s) and Ya(s) = Ga(s)X(s)

—

= Y(5) = G1(5)X(s) + Ga(s) X(s) = {G1(s) + Ga(s)} X(5)
G(s) = Gi(s) + Gafs).

That means we can represent the parallel connection of two blocks with a single block

The transfer function of this single block is the sum of the transfer functions of those
two blocks. The equivalent block diagram is shown below.

X(s) Y(s)

—» Gy(s) + Gz (5) pP———>

Similarly, you can represent parallel connection of ‘n’ blocks with a single block. The

transfer function of this single block is the algebraic sum of the transfer functions of all
those ‘n’ blocks.

Feedback Connection

As we discussed in previous chapters, there are two types of feedback — positive
feedback and negative feedback. The following figure shows negative feedback control

system. Here, two blocks having transfer functions G(s)G(s) and H(s)H(s) form a closed
loop.



X(s) + E(s) G(s) Y(S)>
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The output of the summing point is -
BE(s) = X(s) — H(s)Y (s)
The output Y (s) is -
Y(s) = E(s)G(s)
Substitute E(s) wvalue in the above equation.
Y(s) ={X(s) — H(s)Y(s)}G(s)}
Y(s) {1+ G(s)H(s)} = X(5)G(5)}

Y(s) _ G(s)
X(s) 1+ G(s)H(s)

Therefore, the negative feedback closed loop transfer function is :
G(s)
1+G(s)H(s)

This means we can represent the negative feedback connection of two blocks with a single
block. The transfer function of this single block is the closed loop transfer function of the
negative feedback. The equivalent block diagram is shown below.

X(s) G(s) Y(s)
—_ S
1+ G(s)H(s)




Similarly, you can represent the positive feedback connection of two blocks with a single
block. The transfer function of this single block is the closed loop transfer function of the
positive feedback, i.e.,

G(s)
1-G(s)H(s)

Block Diagram Algebra for Summing Points

There are two possibilities of shifting summing points with respect to blocks -

e Shifting summing point after the block

e Shifting summing point before the block
Let us now see what kind of arrangements need to be done in the above two cases one by
one.
Shifting the Summing Point before a Block to after a Block

Consider the block diagram shown in the following figure. Here, the summing point is
present before the block.

R(s) + R(s)+X(s) J e Y(s)’

i

X(s)

Summing point has two inputs R(s) and X(s)

The output of Summing point is {R(s) + X(s)}.

So, the input to the block G(s) is {R(s) + X(s)} and the output of itis -
Y(s) = G(s) {R(s) + X(5)}

= Y(s) = G(s)R(s) + G(s) X(s) (Equation 1)
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Output of the block G(s) is G(s)R(s).
The output of the summing point is
Y(s) = G(s)R(s) + X(s) (Equation 2)

Compare Equation 1 and Equation 2.

The first term ‘G(s)R(s)"“G(s)R(s)’ is same in both the equations. But, there is difference in
the second term. In order to get the second term also same, we require one more block
G(s)G(s). It is having the input X(s)X(s) and the output of this block is given as input to
summing point instead of X(s)X(s). This block diagram is shown in the following figure.

R(s) G(s)R(s) + Y(s)
—_— G(s) — >
+
G(s)X(s)
G(s)
X(s)

Shifting Summing Point Before the Block
Consider the block diagram shown in the following figure. Here, the summing

point is present after the block.

R(s) G(s)R(s) + Y(s)
B G(s) e — 5

-+

X(s)



Output of this block diagram is -
Y(s) = G(s)R(s) + X(s) (Equation 3)
Now, shift the summing point before the block. This block diagram is shown in

the following figure.

R(s) + R(s)+X(s) s Y(sl

il

X(s)

Output of this block diagram is -
Y(S) = G(s)R(s) + G(s) X (s) (Equation 4)

Compare Equation 3 and Equation 4,

The first term ‘G(s)R(s)’ is same in both equations. But, there is difference in the second
term. In order to get the second term also same, we require one more block 1/G(s). It is
having the input X(s) and the output of this block is given as input to summing point
instead of X(s). This block diagram is shown in the following figure.

R(s) + % X(s)
R(s) + { ()} [ 6es) Y(i)

-+

G(s)

X(s)



Block Diagram Algebra for Take-off Points
There are two possibilities of shifting the take-off points with respect to blocks -

o Shifting take-off point after the block
o Shifting take-off point before the block

Let us now see what kind of arrangements is to be done in the above two cases, one by one.

Shifting a Take-off Point form a Position before a Block to a position after the Block

Consider the block diagram shown in the following figure. In this case, the take-off point is
present before the block.

R(s) »| G(s) Y(f)»

X(s)

Here, X(s) = R(s) and Y(s) = G(s)R(s)

When you shift the take-off point after the block, the output Y(s) will be same. But, there is
difference in X(s) value. So, in order to get the same X(s) value, we require one more
block 1/G(s). It is having the input Y(s) and the output is X(s) this block diagram is shown
in the following figure.

R(s) Y(s)
—»| G(s) I —
1




Shifting Take-off Point from a Position after a Block to a position before the Block

Consider the block diagram shown in the following figure. Here, the take-off point is
present after the block.

R(s) Y(s)

—| G(s) =

X(s)
Here, X(s) = Y(s) = G(s)R(s)
When you shift the take-off point before the block, the output Y(s) will be same. But, there

is difference in X(s) value. So, in order to get same X(s) value, we require one more block

G(s) It is having the input R(s) and the output is X(s). This block diagram is shown in the
following figure.

Rs) o G(s) =

G(s)

l

X(s)

The concepts discussed in the previous chapter are helpful for reducing (simplifying) the block
diagrams.

Block Diagram Reduction Rules

Follow these rules for simplifying (reducing) the block diagram, which is having many
blocks, summing points and take-off points.

e Rule 1 - Check for the blocks connected in series and simplify.

e Rule 2 - Check for the blocks connected in parallel and simplify.



e Rule 3 - Check for the blocks connected in feedback loop and simplify.

e Rule 4 - If there is difficulty with take-off point while simplifying, shift it towards right.
e Rule 5 - If there is difficulty with summing point while simplifying, shift it towards left.
e Rule 6 - Repeat the above steps till you get the simplified form, i.e., single block.

Note - The transfer function present in this single block is the transfer function of the
overall block diagram.
Example

Consider the block diagram shown in the following figure. Let us simplify (reduce) this
block diagram using the block diagram reduction rules.

Y(s)

‘H1<_‘

H, |«

Step 1 — Use Rule 1 for blocks G1 and G3. Use Rule 2 for blocks Ga3 and Gy.
The modified block diagram is shown in the following figure.

R(s —+

= i |— 5 G
+ 3 — Y(s)
+




Step 2 — Use Rule 3 for blocks G1Go and Hy . Use Rule 4 for shifting take-off
point after the block G§g. The modified block diagram is shown in the following

figure.
Hg
R(s) GG e Y(s)
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+
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Step 3 — Use Rule 1 for blocks (G3 + G4) and G. The modified block diagram

is shown in the following figure.
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Step 4 — Use Rule 3 for blocks (G3 + G4)Gs and Hi. The modified block

diagram is shown in the following figure.

Y(s)

R(s) d Cls (Gs 3+ GG
+'® LA G 6. | | L (Gt G
+
H,

Gs
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Step 5 — Use Rule 1 for blocks connected in series. The modified block diagram

is shown in the following figure.
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Step 6 — Use Rule 3 for blocks connected in feedback loop. The modified block
diagram is shown in the following figure. This is the simplified block diagram.

Y(s
R(s) G1G, G5*(G3 + Gy) (s)
— —
(14 G1G2H {1 + (G3 + G4)GsH3}Gs — G1G2G5(G3 + G4)H,

Therefore, the transfer function of the system is

Y(s) G1G2GEGs + Gy)

R(s) (1 4+ G1GaH){1 + (Ga + G4)GsH3}Gs — G1G2Gs(Ga + G4)Ha

Note - Follow these steps in order to calculate the transfer function of the block diagram
having multiple inputs.

e Step 1 - Find the transfer function of block diagram by considering one input at a
time and make the remaining inputs as zero.

e Step 2 - Repeat step 1 for remaining inputs.
e Step 3 - Get the overall transfer function by adding all those transfer functions.

The block diagram reduction process takes more time for complicated systems because;
we have to draw the (partially simplified) block diagram after each step. So, to overcome
this drawback, use signal flow graphs (representation).



Block Diagram Reduction- Summary
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= — —¥
(a) Insertion or removal of unity gain
v(?- = = T
(b) Changing a summer sign
¥ 6w o) — (= Bl 60 [ 6
Gys) >
G\(5)X(s) Gy (s)X(s)
(¢) Moving a pickoff point back
X0 60 60 s (= XL G Gy(9) _T_.

(d) Moving a pickoff point forward



(f) Combining or expanding junctions

Xz(s)
+ ')\ X,(s) = X(s)
X,(s) > 9, >
X, (8) = Xy(5) st X,(s) = Xy(s)
() Moving a pickoff point behind a summation
X,(s) iz
LR A0 L W
+
) gmxﬂs) = Xz(:) - & - +
: _\f/ : Q X, (5) = X(s)
|
Xy(s) Xy(s)

(h) Moving a pickoff point forward of a summation

Example-1:
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Example-2:
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Signal flow graph is a graphical representation of algebraic equations. In this chapter, let
us discuss the basic concepts related signal flow graph and also learn how to draw signal
flow graphs.

Basic Elements of Signal Flow Graph

Nodes and branches are the basic elements of signal flow

graph. Node

Node is a point which represents either a variable or a signal. There are three types of nodes
— input node, output node and mixed node.

Input Node - It is a node, which has only outgoing branches.
Output Node - It is a node, which has only incoming branches.
Mixed Node - It is a node, which has both incoming and outgoing branches.

Example

Let us consider the following signal flow graph to identify these nodes.

a b c

——Y 2 - S

Y1 Y2 Y3 Y4

-d

2 The nodes present in this signal low graph are yq, ¥o, ¥3 and y4.
4 yq and y4 are the input node and output node respectively,

9 yo and ygq are mixed nodes.

Branch

Branch is a line segment which joins two nodes. It has both gain and direction. For
example, there are four branches in the above signal flow graph. These branches have
gainsofa,b, cand-d.



Construction of Signal Flow Graph

Let us construct a signal flow graph by considering the following algebraic equations -

Yo = a12¥1 + @42Y4
Y3 = @2aY2 + A53Ys
Y4 = a34ls
Y5 = a45Y4 + A3cY3
Yo = asplls

There will be six nodes (v, va, ¥3, ¥4, ¥c and vg) and eight branches in this
signal low graph. The gains of the branches are aq5, as3, 834, 845, 85g, 842, 853

and asc.

To get the owverall signal flow graph, draw the signal flow graph for each
equation, then combine all these signal flow graphs and then follow the steps
given below —

Step 1 — Signal flow graph for ys = a1ay; +ag9yy is shown in the following
figure.

;32
< — - = °
B Y= s Ya ¥Ys Ye
A4
Step 2 — Signal flow graph for ¢ya — ags3ys + asays is shown in the following
figure.
az3
= - ) - -
i Y= Y3 Ya s Ve
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Step 3 — Signal flow graph for y4 — asaya is shown in the following figure.
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Step 4 — Signal flow graph for ys = a4sys + aasys is shown in the following
figure.

aszs

B @ @
Y1 Y2 Y3 Y4 Ys Ye

Step 5 — Signal flow graph for yg = aseys is shown in the following figure.

Qs
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Y1 Y2 Y3 Ya Ys Ye

Step 6 — Signal flow graph of overall system is shown in the following figure.




Conversion of Block Diagrams into Signal Flow Graphs

Follow these steps for converting a block diagram into its equivalent signal flow graph.

=

Represent all the signals, variables, summing points and take-off points of block
diagram as nodes in signal flow graph.

Represent the blocks of block diagram as branches in signal flow graph.

Represent the transfer functions inside the blocks of block diagram asgains of the
branches in signal flow graph.

Connect the nodes as per the block diagram. If there is connection between two
nodes (but there is no block in between), then represent the gain of the branch as
one. For example, between summing points, between summing point and takeoff
point, between input and summing point, between take-off point and output.

Example

Let us convert the following block diagram into its equivalent signal flow graph.

) L Y9
Gs |-
S A o Y(s)

Represent the input signal R(s) and output signal C(s) of block diagram as input node R(s)
and output node C(s) of signal flow graph.

Just for reference, the remaining nodes (y1 to y9) are labelled in the block diagram. There
are nine nodes other than input and output nodes. That is four nodes for four summing
points, four nodes for four take-off points and one node for the variable between blocks
Giand Ga.



The following figure shows the equivalent signal flow graph.

H,

Let us now discuss the Mason’s Gain Formula. Suppose there are ‘N’ forward paths in a
signal flow graph. The gain between the input and the output nodes of a signal flow graph
is nothing but the transfer function of the system. It can be calculated by using Mason’s

gain formula.
Mason’s gain formula is

_C(s) BN, PA
~ R(s) A

aT

Where,
C(s) is the output node
R(s) is the input node
T is the transfer function or gain between R(S) and C(s)
Pi is the ith forward pathgain

A=1-(sum of all individual loop gains) +(sum of gain products of all possible two
nontouching loops)—(sum of gain products of all possible three nontouching loops)
+....

Aiis obtained from A by removing the loops which are touching the it forward path.



Consider the following signal flow graph in order to understand the basic terminology
involved here.

Path

It iz a traversal of branches from one node to any other node in the direction of
branch arrows. It should not traverse any node more than once.

Examples —y2 — Y3 — Y4 — ¥Ys and Y5 — Y3 — Y2
Forward Path

The path that exists from the input node to the output node iz known as
forward path.

Examples —y; — Y2 — Y3 = Y4 — Y — Yo aNd Y1 — Y2 — Y3 — Ys — Y5
Forward Path Gain

It iz obtained by calculating the product of all branch gains of the forward path.

Examples — abede is the forward path gain of yy — y9 — ys — ¥4 — ¥s — s
and abge iz the forward path gain of y; — yo — ¥ — ys — Vs

Loop

The path that starts from one node and ends at the same node is known as a loop. Hence,
it is a closed path.



Examples —ys — y3 — vy and y3 — Y5 — s
Loop Gain
It iz obtained by calculating the product of all branch gains of a loop.

Examples — bj iz the loop gain of ya — ya3 — y2 and g is the loop gain of
Ys — Ys — Vs

Non-touching Loops

These are the loops, which should not have any common node.

Examples — The loops, ya — ya — y2 and y4 — Ys — Y4 are non-touching.

Calculation of Transfer Function using Mason’s Gain
Formula

Let us consider the same signal flow graph for finding transfer function.

=l

Number of forward paths, N = 2.

=l

First forward path is - Y12y2—y3—>y4—2y5Y6.
First forward path gain, p1=abcde

Second forward path is - Y12y2—y3—>Y5—2Y6
Second forward path gain, p2=abge

Number of individual loops, L =5.

Loops are - Y2 —Ys — Y2, Y3~ Ys — Y3, Y3 — Y4 — Y5 — Y3,
Yo —+ Ys — Y4 and ys — Ys.

Loop gains are - Iy = bj, Iy = gh, Iy =edh, Iy =di and I = f.

Number of two non-touching loops = 2.



=l

First non-touching loops pair is - y2—Yy3—>Vy2, y4—>y5—>V4.
Gain product of first non-touching loops pair1114=bjdi
Second non-touching loops pair is - y2—Yy3—Vy2, Y55,

B =

Gain product of second non-touching loops pair is 1115=bjf
Higher number of (more than two) non-touching loops are not present in this signal flow

graph.We know,
g

f

a b e
- - -
Y1 > Y2 Y3 Vs > Ye

3
h

4 Number of forward paths, N = 2.

9 First forward pathis -y1 — y2 — Y3 — Y4 — Ys — Y6 .
= First forward path gain, p; = abede.

'+ Second forward pathis - Y1 — Y2 — Y3 — Ys — Y.

o Second forward path gain, pa = abge.

@ Number of individual loops, L = 5.
' Loops are - Yo —» Yy —r Y3, Ys —Ys — Ys, Yz —F Y4 — Ys — VY3,

Ys — Y5 — Yy and ys — 5.



9 Loop gains are - Iy = by, lh = gh, Iy =edh, ly =di and g = f.
9 Mumber of two non-touching loops = 2.

2 First non-touching loops pairis - ya — Ys — Y2, Y4 — Ys — Y4,
9 Gain product of first non-touching loops pair, I1ly = bjdi

2 Second non-touching loops pairis - ¢y9 — ya — Y2, Ys — Ys.

9 Gain product of second non-touching loops pairis - Iyl = bjf

Higher number of (more than two) non-touching loops are not present in this
signal flow graph.

Wie know,

A =1— (sum of all individual loop gains)
+(sum of gain products of all possible two nontouching loops)
—(sum of gain products of all possible three nontouching loops)+. ..

Substitute the values in the above equation,

A=1—(bj+gh+edh+di+ f)+ (bjdi + bjf) — (0)



= A=1—(bj+gh+edh+di+ f) +bjdi +bjf
There is no loop which is non-touching to the first forward path.
So, Ay = 1.

Similarly, As = 1. Since, no loop which is non-touching to the second forward
path,

Substitute, N = 2 in Mason’s gain formula

C'(s) 2, PA;

T J—
R{s} A
T Cls)  PiA; + PyAy

R(s) A
Substitute all the necessary values in the above equation.
T Cls) (abede)l + (abge)l

R(s) 1— (bj+gh+cdh+di+ f) + bjdi + bjf
T C(s) (abede) + (abge)
=
R(s) 1—(bj+gh+edh+di+ f)+bjdi +bjf

Therefore, the transfer function is -

Cls) (abede) + (abge)
R(s)  1— (bj+gh+cdh +di+ f) +bjdi + bjf




Example-1:

YPA

T (.S_): Z =k

o F=GG,GG, A,=1 Therewsno P, or A, or more.

¢ Y[ =-GG,H+GGH,-GG,H,

¢ V' 1,=GG,GGHH,

o A=l- E L+ S L, =14GG,H, - G,G,H,;+ GG, H,+GG,G,G,HH,
Y'PA, HEEE

¢ Te)==—-= e
© A I4GGH -GGH +GGH,+GGGGHH,




Example-2:

G
Ris) 0—-
M]. =] GIG] G3 GJ G.: Gt; GTGs ﬁl =].
M: = Gle-G ﬁ: = 1_[_64H1 'G::Hs 'GsG:G;GaHs _G4G*GdH!]+ G4HIGn'H4

= 1+GH+GH +GGGGH +GGGH +CHGH
h=1-[-GH -GH, -GG GGCH -GOGH -CH|
HGHGH +GHGH +GHGH +GAGCGH, +GHGGGGH,
+GHGHGH,
h=1+GH +GH +GGGCH +GGGH +GH
sG,HGH +GHGH +GHGH +GHGGGH +GHOGGGH,
+GH GHGH,
Tﬂ=%ﬂ=Mm2M¢:qqqqqqaq+qqqmﬂﬁﬁq?+qqqqm+qqqm+qmqm]
(5




Example-3:

M, = G,G,G,G, A, =1

M, =G, A, =1
M, = G,G, A, =1+G,
M, =-1 A, =1+G,
M; = —G,G,G, Ag =1

A=1-(-G, - G, — G,G,G;G,) +G,G, = 1+ G, +G, +G,G,G,G, +G,G,

C  GGGG,+ G+ GG, (1+ G)) — (D)(1+ Gy) — GGG,

M 1- (=G, — G, — G,G,G,G,) + G,G,

a)



STATE SPACE ANALYSIS OF CONTINUOUS
SYSTEMS

The state space model of Linear Time-Invariant (LTI) system can be represented as,

X'=AX+B
U
Y=CX+D

U
The first and the second equations are known as state equation and output equation
respectively.

Where,

o Xand X' are the state vector and the differential state vector respectively.
e UandY are input vector and output vector respectively.

e Ais the system matrix.
e Band Care the input and the output matrices.
e D is the feed-forward matrix.
Basic Concepts of State Space Model
The following basic terminology involved in this chapter.

State

It is a group of variables, which summarizes the history of the system in order to predict
the future values (outputs).

State Variable
The number of the state variables required is equal to the number of the storage elements
present in the system.

Examples - current flowing through inductor, voltage across

capacitor State Vector

[t is a vector, which contains the state variables as elements.

In the earlier chapters, we have discussed two mathematical models of the control
systems. Those are the differential equation model and the transfer function model. The
state space model can be obtained from any one of these two mathematical models. Let us
now discuss these two methods one by one.



State Space Model from Differential Equation

Consider the following series of the RLC circuit. It is having an input voltage, vi(t) and the
current flowing through the circuit is i(t).

i(t) R L
— MAN—EN———
+ +

v;(t) vo(t) —C

There are two storage elements (inductor and capacitor) in this circuit. So, the number of
the state variables is equal to two and these state variables are the current flowing
through the inductor, i(t) and the voltage across capacitor, vc(t).

From the circuit, the output voltage, vo(t) is equal to the voltage across capacitor, v¢(t).

vy (t) = ve(t)

Apply KNVL around the loop.

Lo dilt)
vi(t) = Ri(t) + L= +ve(t)
_dil) _ Ri) _w(®) )

dt L L L

The voltage across the capacitor is -
1 [.
v (t) = - i(t)dt

Differentiate the above equation with respect to time,

dec(t) _ i(t)
dt C




State vector, X = [

Mw
v (1)
dt
du(t)
dt

Cifferential state vector, X =

We can arrange the differential eguations and output equation into the standard
form of state space model as,

di(t) R

X=| & Z{_I _n%][ﬁ}]+

1
dt c

r=to u[]

ve (1)

[vi(t) |

1
L
0

Where,
_E 1 1
A= F ¥, B=|L|,C=[0 1]andD=0]
= 0
[

State Space Model from Transfer Function

Consider the two types of transfer functions based on the type of terms present in the
numerator.

e Transfer function having constant term in Numerator.
e Transfer function having polynomial function of ‘s’ in
Numerator. Transfer function having constant term in Numerator

Consider the following transfer function of a system



Y(s) bo
U(s) sn4a, 18" 14+...+a18+ag

Rearrange, the above equation as

(8" + @y 8" ... +ag)Y (s) = by U(s)
Apply inverse Laplace transform on both sides
d"y(t) a! (} dy(t)
I S e ha =g Faou(t) = bou(t)
Let
y(t) =z
dy(t
d*y()
a o m

and u(t)=u



Then,

T+ Op_ 1T+ .. Fa122 + gz = bpu
From the above equation, we can write the following state equation.
T = —QgT1— Q1 T3 —. .. —Ap_1Ty + U

The output equation is -

y(t) =y =1
The state space model is -
C gy T
T2
X=| :
in—l
[ T
[0 1 0 0 T[ =27 [O]
0 1 0 0 T3 0
- : ' + [u]
0 0 0 0 1 Tr1 0
| —fp —fy —ay ... —lp 3 —lp 1) | Tm b
C 2y ]
Ty
Y=[1 0 ... 0 0]
Tn_1
- E!'ii- =

Here, D=[0].



Example

Find the state space model for the system having transfer function.

Y{(s) 1
U(s) s?+s+1

Rearrange, the abowve equation as,
(2 +s54+1)Y(s) =U(s)
Apply inverse Laplace transform on both the sides,

2. ’
d’y(t) | dy(t

S e vt = u
Let
y(t) = z1
M =Ty =T

dt
and u(t) = u
Then, the state equation is

Tg=—T1— Ty +Uu

The output equation is

y(t) =y ==z

The state space model is

Y=[1 0] ””]

€3




Transfer function having polynomial function of ‘s’ in

Numerator Consider the following transfer function of a

system
Y(s)  bps™ +bp15™ . +bis + by
Uls) §" +an_18" 1+... a5 +ag
Y(s 1 _
_ 1) =( ){bﬂ,s“+bn_1s“ L +bys
Uls) " +an_15" 1 +... a5 +ag
+ bn}

The abowve eqguation iz in the form of product of transfer functions of two blocks,
Y(s) _ (V{S} ) (Y{S} )
U(s) \U(s) ) \V(s)

Vis) 1
U(s) s™+a,_15"1+...4ais +ag

which are cascaded.

Here,

Rearrange, the above equation as



(5™ +@p_ 15" 4. .. 4+ag)V(s) = U(s)

Apphy inverse Laplace transform on both the sides.

A" (¢ A7 lat dwr (£
T‘Ea} —+ an_lT_E-}_F- = = +31% —+ auﬂ{t} = '1.:.{]‘:}
Let
w(t) = a4
duv({t) .
ds 1
d2w () ]
—_— = — o
dz2 a 2
dA™lu(t) -
T dem—1 T Trn—1
A" () _
ETE
and u(t)=u

Then, the state equation is

Ty = —QgT] — A1T3—-.. —Qp_1Ty +U
Consider,

Y (s)
Vis)

= b,s™ + b, 18 1 4... +by 5+ by

Rearrangs, the abowe equation as

Y(s) = (bps™ + bp_15™ 1+ .. b5 + by)V(s)
Apply inverse Laplace transform on both the sides.,

d™w(t d™ tu(t duv(t
—t{} —|—bﬂ_1 t{}—F —|—bl 1‘{}

t) = b, b 7 ST
y(t) den der1 dt

+ bgu(t)

By substituting the state wvariables and y(¢t) = y in the abowe equation, will get
the cutput equation as,

y=byr, +by_12,+ .. +bixo + by



Substitute, x,, value in the above equation.

Y= bn{—au;lll —@d1Tg— .. —Ap—1Tp + '1&} + bﬂ—1$n+- . +bl;rg + 5ni31

Yy = (by — bpag)zy + (by — bpay)zot+. .. +(bpoy — bpap_1)z, +byu

The state space model is

C T
)
X=1:
iI.:*.I'a.—l
R
[0 1 0 0 ]
0 1 0 0
0 0 0 0 1
L —Qp —ap —az ... —Qp-2 —Qp-1_
Y =1[by —bpag b1 —bpar ... bp_g—bpan_s
If b, = 0, then,

Y = [bn bl R bﬂ__g bﬂ_j_]

Transfer Function from State Space Model

Ty 0
€To 0

+
Ta—1 0
L Tn _bﬂ

b1 — bﬂa'ﬂ—].]




We know the state space model of a Linear Time-Invariant (LTI) system is -
X'=AX+B
U
Y=CX+D
U
Apply Laplace Transform on both sides of the state equation.
sX(s) =AX(s)+BU(s)
= (sI-A)X(s)=BU(s)
= X(s) = (sI-A)"'BU(s)
Apply Laplace Transform on both sides of the output equation.
Y(s) =CX(s) + DU(s)
Substitute, X(s) value in the above equation.
=Y(s) =C ( sI-A)"'BU(s)+DU(s)
=Y(s) = [C (sI-A)"'B+D]U(s)
=Y(s) U(s) = C(sI-A)"B+D
The above equation represents the transfer function of the system. So, we can calculate the

transfer function of the system by using this formula for the system represented in the
state space model.

Note - When D=[0], the transfer function will be
Y(s)

—C(sI — A)"'B
U(s) ( )

Example

Let us calculate the transfer function of the system represented in the state space model as,



Y=[0 1] xl]
L3
Here,
A:{_l _1] =[1}, C=[0 1] and D=][0]
1 0 0

The formula for the transfer function when D = [0] is -

Y(s)
U(s)

=C(sI — A)'B
Substitute, &, B & C matrices in the abowve equation.
Y(s) 0 1) ls—i-l 1}‘1 H
U(s) -1 = 0
Ll
1 s+1 [1}
(s+1)s—1(—1) [0

vis) ”[ﬂ R

U(s) s24s+1 s2+4+s5+1

=[0 1]

=

Therefore, the transfer function of the system for the given state space model is

Uls) s2 +s5+1

State Transition Matrix and its Properties

If the system is having initial conditions, then it will produce an output. Since, this output

is present even in the absence of input, it is called zero input response xzir(t).

Mathematically, we can write it as,



zzm(t) = e X(0) = [ {[sr _ A]‘l;f{u}}
From the above relation, we can write the state transition matrix ¢(t) as

o(t) =et = L sI — A]!

So, the zero input response can be obtained by multiplying the state transition
matrix ¢(t) with the initial conditions matrix.

Properties of the state transition matrix

If t=0, then state transition matrix will be equal to an Identity matrix.

$(0)=I

e Inverse of state transition matrix will be same as that of state transition matrix just

by replacing ‘t’ by ‘-t’.

If t=t1+t2 , then the corresponding state transition matrix is equal to the

multiplication of the two state transition matrices at t=t1t=t1 and t=t2t=t2.

o (t1+t2)=d(t1) Pp(t2)
Controllability and Observability

Let us now discuss controllability and observability of control system one by

one. Controllability

A control system is said to be controllable if the initial states of the control system are

transferred (changed) to some other desired states by a controlled input in finite duration
of time.

We can check the controllability of a control system by using Kalman’s test.

e Write the matrix Qc in the following form.



Q.=[B AB AB ... A™'B]

Find the determinant of matrix QcQc and if it is not equal to zero, then the control
system is controllable.

Observability

A control system is said to be observable if it is able to determine the initial states of the
control system by observing the outputs in finite duration of time.

We can check the observability of a control system by using Kalman'’s test.

Write the matrix Qo in following form.

Qo — [CT ATCT [AT}ECT {AT}‘H—ICT]

Find the determinant of matrix QoQo and if it is not equal to zero, then the control
system is observable.

Example

Let us verify the controllability and observability of a control system which is represented
in the state space model as,



Here,

f‘l:[_ll _ﬂl]? B:[l}? [0 1],D=1[0] and n=2

Forn = 2, the matrix Q. wil be
Q.=[B AB]|

We will get the product of matrices A and B as,

o]
1
1 -1
|Qel =1+#10

Since the determinant of matrix Qc is not equal to zero, the given control system is
controllable.

For n=2, the matrix Qo will be -

Q. = [T AT T
Here,
AT — [_1 1] and o7 — [D]
—1 o 1

Wi wrill get the product of matrices AT and T a=

AT T — [1]
0
0 1
i}Qo_[l n]
= |2 = —1 = 0

Since, the determinant of matrix Qo is not equal to zero, the given control system is

observable.Therefore, the given control system is both controllable and observable.



UNIT-III

TIME RESPONSE ANALYSIS

We can analyze the response of the control systems in both the time domain and the
frequency domain. We will discuss frequency response analysis of control systems in later
chapters. Let us now discuss about the time response analysis of control systems.

What is Time Response?

If the output of control system for an input varies with respect to time, then it is
called the time response of the control system. The time response consists of two parts.

Transient response
Steady state response

The response of control system in time domain is shown in the following figure.

s
0 < et > ¢

Transient Steady
State state

Here, both the transient and the steady states are indicated in the figure. The
responses corresponding to these states are known as transient and steady
state responses.

Mathematically, we can write the time response c(t) as

c(t) = ctr(t) +css(t)



Where,

cer(t) is the transient response
Css(t) is the steady state response

Transient Response

After applying input to the control system, output takes certain time to reach steady state.
So, the output will be in transient state till it goes to a steady state. Therefore, the
response of the control system during the transient state is known as transient response.

The transient response will be zero for large values of ‘t". Ideally, this value of ‘t’ is infinity
and practically, it is five times constant.

Mathematically, we can write it as

lim ¢4 (t) = 0

t—o0
Steady state Response
The part of the time response that remains even after the transient response has zero

value for large values of ‘t’ is known as steady state response. This means, the transient
response will be zero even during the steady state.

Example

Let us find the transient and steady state terms of the time response of the control system
c(t) = 10 + 5e ™t

4

he™"

Here, the second term will be zero as t denotes infinity. So, this is the transient

term. And the first term 10 remains even as t approaches infinity. So, this is the steady
stateterm.

Standard Test Signals

The standard test signals are impulse, step, ramp and parabolic. These signals are used to
know the performance of the control systems using time response of the output.

Unit Impulse Signal

A unit impulse signal, §(t) is defined as



d(t) =0 fort £ 0
and [ d(t)dt = 1

The following figure shows unit impulse signal,

5(t) 4

0

rr

So, the unit impulse signal exists only at't’ is equal to zero. The area of this signal under
small interval of time around‘t’ is equal to zero is one. The value of unit impulse signal is
zero for all other values of't’.

Unit Step Signal

A unit step signal, u(t) is defined as
w(t) =1;t =0
=0;t<0

Following figure shows unit step signal.

ul(t)
-~

i




So, the unit step signal exists for all positive values of't’ including zero. And its value is one
during this interval. The value of the unit step signal is zero for all negative values of't’.

Unit Ramp Signal

A unit ramp signal, r (t) is defined as

r(it) =tt =0
=0;t<0

Wiie can write unit ramp signal, r(t) in terms of unit step signal, w(t) as

Following figure shows unit ramp signal.

r(t)
*

>
0 t

So, the unit ramp signal exists for all positive values of't’ including zero. And its value

increases linearly with respect to‘t’ during this interval. The value of unit ramp signal is
zero for all negative values of't’.

Unit Parabolic Signal
A unit parabolic signal, p(t) is defined as,

42
t) = —;t =10
p(t) 5

=0;t<0



We can write unit parabolic signal, p(t) in terms of the unit step signal, w(t) as,

2
plt) = Su(t)

The following figure shows the unit parabolic signal.

p(t)
A

>
0 t

So, the unit parabolic signal exists for all the positive values of't’ including zero. And its
value increases non-linearly with respect to‘t’ during this interval. The value of the unit

parabolic signal is zero for all the negative values of't’.

In this chapter, let us discuss the time response of the first order system. Consider the
following block diagram of the closed loop control system. Here, an open loop transfer
function, 1/sT is connected with a unity negative feedback.



R(S) 4 1 C(S)

We lknow that the transfer function of the closed loop control system has unity
negative feedback as,

C(s)  Gls)
R(s) 1+G(s)

Substitute, G(s) = % in the abowve equation,

cs) = 1
ST+ 1

R(s 1
(5) 1+
The power of 5 is one in the denominator term. Hence, the abowve transfer
function iz of the first order and the system is said to be the first order

system,



We can re-write the above equation as

1
Cls) = (T—-I—l) R(s)
Where,

2 C(s) is the Laplace transform of the output signal ¢ t),
3 R({s) is the Laplace transform of the input signal r(t), and

3 Tis the time constant.

Follow these steps to get the response (output) of the first order system in the
time domain.

2 Take the Laplace transform of the input signal r(t).

© Consider the equation, C(s) = (ﬁ) R(s)

L

Substitute R(s) value in the above equation.

L

Do partial fractions of C'(s) if required.,

L

Apply inverse Laplace transform to C(s).

Impulse Response of First Order System

Consider the unit impulse signal as an input to the first order system.
So, r(t)=6(t)

Apply Laplace transform on both the

sides. R(s) =1

Consider the equation, C(s) = (ﬁ) R(s)

Substitute, R(s) = 1in the above equation.

1 1
Cle) = (T—-i—l) W=7

Rearrange the above equation in one of the standard forms of Laplace transforms.



C{S}Z;iﬂ{s]zl( ! )

T(s+%) 5+%

Applying Inverse Laplace Transform on both the sides,

The unit impulse response is shown in the following figure.

c(t)

1
T

The unit impulse response, c(t) is an exponential decaying signal for positive values of ‘t’
and it is zero for negative values of ‘t’.

Step Response of First Order System

Consider the unit step signal as an input to first order

system. So, r(t)=u(t)



Consider the equation, C(s) = (5T1+1 ) R(s)

Substitute, R(s) = % in the above equation,

Cls) = (5T1+ 1) G) B ﬁ

Co partial fractions of C(s),

1 A B
G = — = —
(s) s(sT 4+ 1) 5 i sT 41
N 1 _ A(sT +1) + Bs
s(sT +1) s(sT +1)

On both the sides, the denominator term is the same. So, they will get cancelled by each
other. Hence, equate the numerator terms.

1=A(sT+1)+Bs
By equating the constant terms on both the sides, you will get A = 1.
Substitute, A = 1 and equate the coefficient of the s terms on both the
sides.
0=T+B
=>B=-T

Substitute, A =1 and B = -T in partial fraction expansion of C(s)

Ce)=~-——+ L 7T

s sT+1 s T(s—l—%)

Apply inverse Laplace transform on both the sides.

o(t) = (1 _ e‘(?)) u(t)



The unit step response, c(t) has both the transient and the steady state terms.
The transient term in the unit step response is -
cer (1) —cfg(%)-u(t)

The steady state term in the unit step response

Ccss(t) = u(t)
is - The following figure shows the unit step

c(t)
responsey

. Ml S

ry

The value of the unit step response, c(t) is zero at t = 0 and for all negative values of t. It
is gradually increasing from zero value and finally reaches to one in steady state. So, the
steady state value depends on the magnitude of the input.

Ramp Response of First Order System

Consider the unit ramp signal as an input to the first order system.

So,r(t)=tu(t)
Apply Laplace transform on both the sides.

Consider the equation, C(s) = (ﬁ) R(s)

Substitute, R(s) = %

1 1 1
Cls) = (5T+1) (E) - s2(sT + 1)

in the above equation.



On both the sides, the denominator term is the same. So, they will get cancelled by each
other. Hence, equate the numerator terms.

1=A(sT 4+ 1) + Bs(sT +1) + Cs”

By equating the constant terms on both the sides, you will get A = 1.
Substitute, A = 1 and equate the coefficient of the s terms on both the
sides.

0=T+B=>B=-T

Similarly, substitute B = -T and equate the coefficient of s? terms on both the sides. You
will get C=T?
Substitute A = 1, B = -T and C=T?in the partial fraction expansion of C(s).

C(s) 1 T T2 1 T+ T2
sl = — _— e — -
s2 s sT+1 s s T(s+%)
1 T T
= C(s)=— — — -
) g S+ 7

Apply inverse Laplace transform on both the
sides.

c(t) = (t _T +Te‘(%)) u(t)

The unit ramp response, c(t) has both the transient and the steady state

terms. The transient term in the unit ramp response is

¢

eu(t) = Te (Fuge)
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The steady state term in the unit ramp response is -

Css(t) = (t — T)u(t)

The figure below is the unit ramp response:

c(t)
A

The unit ramp response, c(t) follows the unit ramp input signal for all positive values of t.
But, there is a deviation of T units from the input signal.

Parabolic Response of First Order System

Consider the unit parabolic signal as an input to the first order system.

So, r(t) = Lu(t)

Apply Laplace transform on both the sides.

Consider the equation, C(s) = (ﬁ) R(s)

Substitute R(s) = % in the abowve equation,

qﬂ:(ﬂﬁd)(é)zgg%:ﬁ
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Do partial fractions of C(s).

C(s) 1 A n B N C n D
Ns) = —— =
sA(sT+1) s s2 s  sT+1
After simplifying, vou will get the wvalues of A B, T and D as 1,
—T, T?and — T3 respectively, Substitute these wvalues in the abowve partial

fraction expansion of Ci(s).

1 7 , T? 73 1 T
Col=g-—F+5 a7z =C=5-—7+

T2 T2
e 1
s+ T

Apply inverse Laplace transform on both the sides.
t? [t
c(t) = (? —Tt+T:—T% (T) ) u(t)

The unit parabolic response, c(t) has both the transient and the steady state terms.

The transient term in the unit parabolic response is

t

Cip (1) = —TEE_(T)u{t]

The steady state term in the unit parabolic response is

Cos(t) = (t; — Tt + TZ) u(t)

From these responses, we can conclude that the first order control systems are not stable
with the ramp and parabolic inputs because these responses go on increasing even at
infinite amount of time. The first order control systems are stable with impulse and step
inputs because these responses have bounded output. But, the impulse response doesn’t
have steady state term. So, the step signal is widely used in the time domain for analyzing

the control systems from their responses.
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In this chapter, let us discuss the time response of second order system. Consider the
following block diagram of closed loop control system. Here, an open loop transfer
function, w 2 / s(s+28wn) is connected with a unity negative feedback.

R(s) + W, 2 C(s)
" (s + 260,) |

We know that the transfer function of the closed loop control system having
unity negative feedback as

C(s)  G(s)
R(s) 1+G(s)

Substitute, G(s) = s(s%‘éw,) in the above equation.
()
C(S) _ s(s4+20w,,) _ w%
R(s) 1+( w ) 52 + 20wy s +wd
s(s+2duy,)

The power of ‘s’ is two in the denominator term. Hence, the above transfer function is of
the second order and the system is said to be the second order system.

The characteristic equation is -

52 4 20w, s + Wk =
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The roots of characteristic equation are -

—2wid, + %,.-'“[Eéwﬂjlg — 4o —2(dwy, £ w2 — 1)
T 2 - 2
= 8§ = —dw, twy, V"'IJ! -1 b

The two roots are imaginary when 6 = 0.

The two roots are real and equal when § = 1.

The two roots are real but not equal when & > 1.
The two roots are complex conjugate when 0 < § <

1. We can write C(s) equation as,

C i R
A& = 5
(%) (52+2c5wﬂ5+w%) ®)

Where,
C(s) is the Laplace transform of the output signal, c(t)
R(s) is the Laplace transform of the input signal, r(t)
wn is the naturalfrequency
8 is the damping ratio.

Follow these steps to get the response (output) of the second order system in the time
domain.

Take Laplace transform of the input signal, r(t).

Consider the equation, C(s) = (m) R(s)

Substitute R(s) value in the above equation.
Do partial fractions of C'(s) if required,

Apply inverse Laplace transform to C(s).

CONTROL SYSTEMS



Step Response of Second Order System

Consider the unit step signal as an input to the second order system.Laplace transform of
the unit step signal is,

R(s) = —
We know the transfer function of the second order cosed loop control swstem
is,
C(s) w?
R(s) 52 4 2o, 5 + w2

Case 1: & =0
Substitute, d = 0 in the transfer functicon.

R(s) 52 4 w2
= C(s) = (7) Ri(s)
s2 4 w2
Substitute, Ris) = % in the abowve equation.

C(s) = (52 2 ) ( ) T s(s? :wﬂ,)

Apply inverse Laplace transform on both the sides.
c(t) = (1 — cos(wrt)) w(t)

So, the unit step response of the second order system when /delta = 0 will be
a continuous time signal with constant amplitude and frequency.,

Case 2: 5 =1
Substitute, /delta = 1 in the transfer function.

C(s) o
R(s) T 52 + 2 s + wd
= C(s) = (7(5 o) ) R(s)

Substitute, Ris) = ; in the abowve equation.

C(s) = {s_'_wnjg) ( ) - s(s +in]'2

Do partial fractions of C'(s).
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w2 A B C
Cls) = ——5 = —+ +
s(s +wy)? 5 sHwp  (s4wy)?

After simplifying, vou will get the values of A, B and C as 1, —land — w,
respectively, Substitute these values in the above partial fraction expansion of

C(s).

1 1 )
C(s) = = — -
5 stwp (s+twy)

Apply inverse Laplace transform on both the sides,
e(t) = (1 — e ™™ — w te “mb)u(t)

So, the unit step response of the second order system will try to reach the step
input in steady state,

Case3:0<0d6 <1

We can modify the denominator term of the transfer function as follows —
s + 20wy s +wd = {5 +2(5)(dwn) + (dwn)?} +wd — (dwy)?
= (54 dwp)? + w2 (1—6%)

The transfer function becomes,

C'(s) w2
R(s)  (s+dw,)? +wd(1—42)
wl
= C(s) = ( ) R(s)

(5 + dwn)? +wd (1 — 42)

Substitute, R(s) = % in the above equation.

w2 1 wn
o) = ('[s—l—ciw )2 +wl (1—62])(;)_ 5((s +dwp)? +wi (1 - 42))
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Do partial fractions of C'(s).

12 .
C(s) = Wi _ i Bs+C

s((5 + dwr)? +wl (1 —42)) s (5 + dwn)? + wd (1 — §2)

After simplifying, vou will get the values of &, B and C as 1, —land — 2dw,

respectively, Substitute these wvalues in the abowe partial fraction expansion of
Cis).

C{s}:l— § + 26wy,
s (54 dwy)? +wd(1—42)
1 5 + dwy, Oy,
Cls) = = — : B :
8 (5 + dewp ) + win (1 — §2) (5 + dwp)? +wi (1 — §2)
AP S S = 2
§ { s+, ) Hn, v 167 1—d% \ (s, ) +Ho, vV 1—47)

Substitute, wp v 1 — 62 as wy in the abowve eguation.

Cl(s) = 1 (8 + dewy) _ d ( Ly )

s (s + dewp )? + w2 V1 — 82 \ (5 + dwy)? +

Lpply inverse Laplace transform on both the sides.

c(t) = (1 — e %t cos(wyt) — Le_&“‘“t sin{wdt}) u(t)
V1 — 42

e(t) = (1 _ %({Vﬁ —§7%) cos(wat) + Jsin[wdt})) u(t)

If v1— 42 = sin(#), then ‘& wil be cos(8). Substitute these wvalues in the

above equation.

c(t) = (1 — ﬂ (sin(#) cos(wat) + cos(d) sin{wdt}}) w(t)

V1 — 42
E—Jw,,t )
= e(t) = (1 - (m) sin(wat + H]) u(t)
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So, the unit step response of the second order system is having damped oscillations
(decreasing amplitude) when ‘¢’ lies between zero and one.

Case4:6>1

We can modify the denominator term of the transfer function as follows -
s + 20w, s +wi = {5 +2(5) (dwy) + (dwn)®} +wd — (dwp)?
— 2 2 (2
= (84 dw,,)” —wd (6° — 1)
The transfer function becomes,

C(s) wl

R(s)  (s+dw,)? —wh (62 - 1)

%
- = ({s T dwn)? — A (82— 1) ) e

Substitute, R(s) = % in the above equation.

0= (i)

Do partial fractions of C'(s).

|
-

wd
s( s o, +uu, v 47— 1)( s+, —u, vV 67— 1)

2

wﬂ
C(s) = —
5(5 + dwy, +wpvid2 —1)(5+ dw,, —wp Va2 —1)
A B C

5 s+dw, twyvVdl—1 s+ 0w, —w,vd2-—1

After simplifying, vou will get the values of &, B and C as 1, 1
2(6++/d2—1)(vd*-1)
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-1
2(6—+/d2—1)(v/6*-1)

fraction expansion of C'(s).

and respectively, Substitute these walues in above partial

Cl(s) = 1 + ! ( ! )
5 200+ d2 —1)(Vé2 — 1) \s+dwy, +wpVé2 —1

: (o)
(2{5 — V62 —1)(V§2 — 1}) 5+ dwy, —wp Va2 —1
Apply inverse Laplace transform on both the sides,

c(t)
o (B, V- 1)t

_ 1
B (1 i (zww’f—lwaz—l:l)
) E—(Ju.\“—u.\“v Jz—ljt) u{t}

_ 1
(z(a—ﬁz—nw.ﬁz—l)

Since it is over damped, the unit step response of the second order system when 6 > 1 will

never reach step input in the steady state.

Impulse Response of Second Order System

The impulse response of the second order system can be obtained by using any one of
these two methods.

Follow the procedure involved while deriving step response by considering the
value of R(s) as 1 instead of 1/s.
Do the differentiation of the step response.

The following table shows the impulse response of the second order system for 4 cases of

the damping ratio.
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Zondition of amping ratio Impulse response fort = 0

&=0 Wy, sinfwyt)
o=1 Wi te ~wnt
O«<d =i L, @St ]
simfcyt
(m ) (wat)

5> 1 ( oy ) (E—(Jm—mﬂ,fd"z—lﬁ

24/ 451

__E—mwfmhﬁﬁiiﬁ)

In this chapter, let us discuss the time domain specifications of the second order system.
The step response of the second order system for the underdamped case is shown in the
following figure.

c(t)

LgsT_ ______________ /r\ . —

0.95

0.5

=
~

7

~~
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All the time domain specifications are represented in this figure. The response up to the
settling time is known as transient response and the response after the settling time is
known as steady state response.

Delay Time

It is the time required for the response to reach half of its final value from the zero
instant. It is denoted by tdtd.

Consider the step response of the second order system for t = 0, when ‘¢’ lies between zero
and one.

—dua,t

e(t) =1— (Ei

T ) sin(wgt + @)
V1—

The final value of the step response is one.

Therefore, at t =1t4, the value of the step response will be 0.5, Substitute,
these values in the above equation.

E._J['\-"u td’

e(tg) =05=1— (—
V1 — 42

) sin(wgtg + 6)

E_qutd'
= (—) sin(wgtg +6) = 0.5
v1— 42

By using linear approximation, you will get the delay time tg as

1-+0.7d
tg = ——
Ly
Rise Time

It is the time required for the response to rise from 0% to 100% of its final value. This is
applicable for the under-damped systems. For the over-damped systems, consider the
duration from 10% to 90% of the final value. Rise time is denoted by t..

Att=t1=0,c(t)=0.

We know that the final value of the step response is one.Therefore, at t=t2, the value of
step response is one. Substitute, these values in the following equation.
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E—Ju.n,,t
c(t) =1— (—) sin(wgt + 0)
v1— 42

E—J[.\.l“tg

c(tag) =1=1— (—) sin(wgts + 0)
vV1— 42

s

E—J[.\.l"tg
= (—) sin(wgts +6) =0
V1 — 42
= sin(wgty +8) =0
= wyty +0=m

T— @

=>'tg =
g

Substitute ty and t; values in the following equation of rise time,

t, =ty — 1,

From above equation, we can conclude that the rise time t:and the damped frequency wd
are inversely proportional to each other.
Peak Time

It is the time required for the response to reach the peak value for the first time. It is
denoted by tp. At t=t, the first derivate of the response is zero.

We know the step response of second order system for under-damped case is

E—Ju.\“t
e(t) =1— (—) sinfwgt + @)
Vv1— g2

Differentiate ¢(t) with respect to 't

de(®) = — (E—) wg cos(wgt +6) — (Mn—;) sin(wqt + 0)
dt V1-§2 V1-§2
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E—Jr.\.l\“t
e(t) =1— (—) sin(wgt + #)
VvV1— 42

Differentiate ¢(t) with respect to 't

de(t) ( e tnt ) — o et
—— = — | —/—— | wy cos(wgt +0) — | ———— | sin(wgt + )
dt V1— 42 V1—§2
Substitute, t = t; and % = 0 in the above eguation.
E—Jw.,,tp .
0=— (m) lwa cos(wgty, + 0) — dwy, sinfwgt, + 6))

= why Jﬁfcos{wd tp +0) — dwy, sin(wgt, +6) =0
= Jﬁi cos(wgty, +0) — dsin(wgt, +6) =0
= sin(#) cos(wgt, + 0) — cos() sin(wgty, +6) =0
= sin(f — wgty, — 8) =0
= sin(—wgty) = 0 = —sin(wyty) = 0 = sin(wyty) =0

= gty =T

=t, = T

P g
From the above equation, we can conclude that the peak time tp and the damped
frequency wgqare inversely proportional to each other.

Peak Overshoot

Peak overshoot My is defined as the deviation of the response at peak time from the final
value of response. It is also called the maximum overshoot.

Mathematically, we can write it
as

Mp=c(tp) - ()

Where,c(tp) is the peak value of the response, c(0) is the final (steady state) value of the
response.

CONTROL SYSTEMS



At t=tp, the response c(t) is -

E—Jr.\.t“tp

clty) =1— (—) sin(wgt, + 0)
d V11— 42 e

w

Substitute, t, = —- in the right hand side of the above equation.
d

e (%) "
con=i-{ i) e () 9

E_(JEF)

=c(ty) =1— | ——— | (—sin(¥))

v"ﬁ

£

We lknow that

So, we wil get c(ty) as

c(ty) =1+ E_(fﬁ)

Substitute the values of ¢(t,) and ¢(oc) in the peak overshoot equation,

M, = 1+e_(fﬁ) 1

= M, = E_( fﬁ)

Percentage of peak owvershoot 26 M’P can be calculated by using this
formula.

P 0
= 100%
c(oo) ’

%M, =
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From the above equation, we can conclude that the percentage of peak overshoot %Mp
will decrease if the damping ratio 6 increases.

Settling time

It is the time required for the response to reach the steady state and stay within the
specified tolerance bands around the final value. In general, the tolerance bands are 2%
and 5%. The settling time is denoted by ts.

The settling time for 5% tolerance band is -

t. = —— =31
T fw,

The settling time for 2% tolerance band is -

ts = m =d4r
Where, T is the time constant and is equal to 1/8wn.

Both the settling time ts and the time constant t are inversely proportional to the
damping ratio 6.

Both the settling time ts and the time constant T are independent of the system gain.
That means even the system gain changes, the settling time ts and time constant t
will never change.

Example

Let us now find the time domain specifications of a control system having the closed loop
transfer function when the unit step signal is applied as an input to this control system.
We know that the standard form of the transfer function of the second order closed loop
control system as

Wi

s? 4+ 20w, 5 + w2

By equating these two transfer functions, we will get the un-damped natural frequency wy
as 2 rad/sec and the damping ratio & as 0.5.
We know the formula for damped frequency wqas

Wy = wnpy/1— g2
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Wi = wnpy'1— 52
Substitute, w,, and 4 values in the above formula.
/ 2
= Wy = 21.,"" 1—(0.5)
= wy = 1.732 rad/ sec

Substitute, d value in following relation

f=cos 14
= #=cos }(0.5) = % rad

Substitute the above necessary values in the formula of each time domain specification
and simplify in order to get the values of time domain specifications for given transfer

function.

The following table shows the formulae of time domain specifications, substitution of

necessary values and the final values
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Time domain Formula Substitution of Final value
specification values in Formula
Delay time tg = 14::1‘?‘5 tg = #@-5) tg=0.675 sec
o _ nB (%) _
Rise time t, = o t, = 1.?;2 t,=1.207 sec
: _ _ 7 _
Peak time ty = PR ty = 1733 ty,=1.813 sec
% Peak YoM, YoM, % Mp=16.32%
overshoot e e
= e ‘l"lﬁ = [ "l"li_':u"g':'2
% 100% x 100%
) ) _ 4 4 _
Settling  time t, = For tg = 05)2) t, =4 sec
for 2%

tolerance band

The deviation of the output of control system from desired response during steady state is

known as steady state error. It is represented as €ss. We can find steady state error using
the final value theorem as follows.

ege = lim e(t) = lim E(s)
t—oo s—0
Where,

E(s) is the Laplace transform of the error signal, e(t)
Let us discuss how to find steady state errors for unity feedback and non-unity feedback
control systems one by one.
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Steady State Errors for Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having unity
negative feedback.

R(s) + G(s) T C(sl

Where,

3 R(s)is the Laplace transform of the reference Input signal »(t)

3 C(s) is the Laplace transform of the output signal e(t)

We know the transfer function of the unity negative feedback cdosed loop
control system as

Cis)  Gls)
R(s) 1+G(s)
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R(s)G(s
Blo) = Rle) =3 EL}G{{S}}
_ R(s) + R(s)G(s) — R(s)G(s)
= Bls) = 11 G(s)
R(s)
=88 =16

Substitute E(s) value in the steady state error formula

5 sR(s)
S T 01+ G(s)

The following table shows the steady state errors and the error constants for standard

input signals like unit step, unit ramp & unit parabolic signals.

Input signal Steady state error e, Error constant
unit step signal Tl.i:,, K, = lim, ,y G(s)
unit ramp signal }}, K, = limg ,; sG(s)
unit parabolic signal fi’,, K, =lim, 3 52G(s)

Where, Kp, Kv and Ka are position error constant, velocity error constant and acceleration

error constant respectively.

CONTROL SYSTEMS



Note - If any of the above input signals has the amplitude other than unity, then multiply
corresponding steady state error with that amplitude.

Note - We can’t define the steady state error for the unit impulse signal because, it exists
only at origin. So, we can’t compare the impulse response with the unit impulse input as t
denotes infinity

Example
Let us find the steady state error for an input signal r(t) = (5 + 2t + %) u(t)

of unity negative feedback control system with G(s) = %

The given input signal is a combination of three signals step, ramp and parabolic.
The following table shows the error constants and steady state error values for
these three signals.

Input signal Error constant Steady state error
t) = bu(t K, =lim,_,, G(s) = sl = o =0

r1(t) u(t) p = lim,,p G(5) = €ss1 = Tor,

ra(t) = 2tu(t) K, = lim,_,; sG(s) €osn = Ki — 0
=0

t? _ T 2 _ 1

ra(t) = Fu(t) K, =lim, .,;5°G(s) €ss3 = 3 = 1

=1

We will get the overall steady state error, by adding the above three steady state errors.
€ss = €s5s1+€s52+€s53
>ess=0+0+1=1=e,=0+0+1=1
Therefore, we got the steady state error essas 1 for this example.

Steady State Errors for Non-Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having non
unity negative feedback.
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R(®) 4 G(s) s
H(s) [&—

We can find the steady state errors only for the unity feedback systems. So, we have to
convert the non-unity feedback system into unity feedback system. For this, include one
unity positive feedback path and one unity negative feedback path in the above block
diagram. The new block diagram looks like as shown below.

G(s)

C(s)

H(s)

>

Simplify the above block diagram by keeping the unity negative feedback as it is. The

following is the simplified block diagram
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R(s) + G(s) C(s)
"1+ caH(s) — 6(s) >

This block diagram resembles the block diagram of the unity negative feedback closed
loop control system. Here, the single block is having the transfer function G(s) / [
1+G(s)H(s)-G(s)] instead of G(s).You can now calculate the steady state errors by using
steady state error formula given for the unity negative feedback systems.

Note - It is meaningless to find the steady state errors for unstable closed loop systems.
So, we have to calculate the steady state errors only for closed loop stable systems. This
means we need to check whether the control system is stable or not before finding the
steady state errors. In the next chapter, we will discuss the concepts-related stability.

The various types of controllers are used to improve the performance of control systems.
In this chapter, we will discuss the basic controllers such as the proportional, the
derivative and the integral controllers.

Proportional Controller

The proportional controller produces an output, which is proportional to error signal.
u(t) ox e(t)
= u(t) = Kpe(t)
Apply Laplace transform on both the sides -
U(s) = KpE(s)

Uls)
E(s)

Therefore, the transfer function of the proportional controller is KPKP.
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Where,

U(s) is the Laplace transform of the actuating signal u(t)
E(s) is the Laplace transform of the error signal e(t)
Kpis the proportionality constant

The block diagram of the unity negative feedback closed loop control system along with the
proportional controller is shown in the following figure.

E U
R(s) + (s) = (s) — .C(sl

Derivative Controller
The derivative controller produces an output, which is derivative of the error signal.
de(t)

dt

ut) = Kp

Apply Laplace transform on both sides.

Therefore, the transfer function of the derivative controller is
Kps. Where, KD is the derivative constant.
The block diagram of the unity negative feedback closed loop control system along with

the derivative controller is shown in the following figure.
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R(s) + E(s) U(s) C(s)

The derivative controller is used to make the unstable control system into a stable one.

Integral Controller

The integral controller produces an output, which is integral of the error signal.
u(t) = Ky / e(t)dt

Apply Laplace transform on both the sides -

o) KB
Uls) _ K;
E(s) s

. . K,
Therefore, the transfer function of the integral controller is TI

Where, KIKI is the integral constant.
The block diagram of the unity negative feedback closed loop control system along with
the integral controller is shown in the following figure.

E(s) u(s)
MR e |3 6y [—ms
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The integral controller is used to decrease the steady state
error. Let us now discuss about the combination of basic
controllers.

Proportional Derivative (PD) Controller

The proportional derivative controller produces an output, which is the combination of
the outputs of proportional and derivative controllers.

u{t} = KPE{t} + Kﬂ%

Apply Laplace transform on both sides -
U(s) = (Kp + Kps)E(s)

U(s)
E(s)

=Kp+ Kps

Therefore, the transfer function of the proportional derivative controller is Kp+Kps.
The block diagram of the unity negative feedback closed loop control system along with the
proportional derivative controller is shown in the following figure.

E U
R(s) 4 (<) Kp+KpsS (S)> G(s) .C(SZ

The proportional derivative controller is used to improve the stability of control system
without affecting the steady state error.

Proportional Integral (PI) Controller

The proportional integral controller produces an output, which is the combination of
outputs of the proportional and integral controllers.
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u(t) = Kpe(t) + K; /.E{t}fﬂ'

Apply Laplace transform on both sides -

U(s) = (KP + %) E(s)
Uls) _ K
E(s) Kp+ ==

K

Therefore, the transfer function of proportional integral controller is Kp + —.

The block diagram of the unity negative feedback closed loop control system along with the
proportional integral controller is shown in the following figure.

R(s) +<»E(s) w1 Y(s) C(s)
Kp+? —| G(s) —>

The proportional integral controller is used to decrease the steady state error without
affecting the stability of the control system.

Proportional Integral Derivative (PID) Controller

The proportional integral derivative controller produces an output, which is the
combination of the outputs of proportional, integral and derivative controllers.
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de(t)
dt

u(t) = Kpe(t) + K—Ij e(t)dt + Kp
Apply Laplace transform on both sides -
K

U(s) = (KP + ?" + Kﬂs) E(s)

Ul(s)
E(s)

Ky
=Kp+— +Kps
5
Therefore, the transfer function of the proportional integral derivative controller
is Kp+ % + Kps.

The block diagram of the unity negative feedback closed loop control system along with the
proportional integral derivative controller is shown in the following figure.

R(s) +<» E(s) = U(s) C(s)
Kp +—+KpsS |— G(S) |—e—>

)
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UNIT - IV
STABILITY ANALYSIS IN S-DOMAIN

Stability is an important concept. In this chapter, let us discuss the stability of system
and types of systems based on stability.

What is Stability?

A system is said to be stable, if its output is under control. Otherwise, it is said to be
unstable. A stable system produces a bounded output for a given bounded input.

The following figure shows the response of a stable system.

c(t)
A

>
0 t

This is the response of first order control system for unit step input. This response has the
values between 0 and 1. So, it is bounded output. We know that the unit step signal has the
value of one for all positive values of t including zero. So, it is bounded input. Therefore,
the first order control system is stable since both the input and the output are bounded.

Types of Systems based on Stability

We can classify the systems based on stability as follows.

Absolutely stable system
Conditionally stable system

Marginally stable system
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Absolutely Stable System

If the system is stable for all the range of system component values, then it is known as the
absolutely stable system. The open loop control system is absolutely stable if all the
poles of the open loop transfer function present in left half of ‘s’ plane. Similarly, the
closed loop control system is absolutely stable if all the poles of the closed loop transfer
function present in the left half of the ‘s’ plane.

Conditionally Stable System

If the system is stable for a certain range of system component values, then it is known
as conditionally stable system.

Marginally Stable System

If the system is stable by producing an output signal with constant amplitude and constant
frequency of oscillations for bounded input, then it is known as marginally stable
system. The open loop control system is marginally stable if any two poles of the open
loop transfer function is present on the imaginary axis. Similarly, the closed loop control
system is marginally stable if any two poles of the closed loop transfer function is present
on the imaginary axis.

n this chapter, let us discuss the stability analysis in the ‘s’ domain using the RouthHurwitz
stability criterion. In this criterion, we require the characteristic equation to find the
stability of the closed loop control systems.

Routh-Hurwitz Stability Criterion

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient
condition for stability. If any control system doesn’t satisfy the necessary condition, then
we can say that the control system is unstable. But, if the control system satisfies the
necessary condition, then it may or may not be stable. So, the sufficient condition is helpful
for knowing whether the control system is stable or not.

Necessary Condition for Routh-Hurwitz Stability

The necessary condition is that the coefficients of the characteristic polynomial should be
positive. This implies that all the roots of the characteristic equation should have negative
real parts.

Consider the characteristic equation of the order ‘n’ is -
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ags™ +a15" ! +ags™ 1. .. tan_15* +aps’ =0

Note that, there should not be any term missing in the n order characteristic equation.
This means that the n order characteristic equation should not have any coefficient that
is of zero value.

Sufficient Condition for Routh-Hurwitz Stability

The sufficient condition is that all the elements of the first column of the Routh array
should have the same sign. This means that all the elements of the first column of the
Routh array should be either positive or negative.

Routh Array Method

If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then the
control system is stable. If at least one root of the characteristic equation exists to the right
half of the ‘s’ plane, then the control system is unstable. So, we have to find the roots of the
characteristic equation to know whether the control system is stable or unstable. But, it is
difficult to find the roots of the characteristic equation as order increases.

So, to overcome this problem there we have the Routh array method. In this method,
there is no need to calculate the roots of the characteristic equation. First formulate the
Routh table and find the number of the sign changes in the first column of the Routh table.
The number of sign changes in the first column of the Routh table gives the number of
roots of characteristic equation that exist in the right half of the ‘s’ plane and the control
system is unstable.

Follow this procedure for forming the Routh table.

Fill the first two rows of the Routh array with the coefficients of the characteristic
polynomial as mentioned in the table below. Start with the coefficient of sn and
continue up to the coefficient of s0.

Fill the remaining rows of the Routh array with the elements as mentioned in the
table below. Continue this process till you get the first column element of row s0s0
is an. Here, an is the coefficient of s0O in the characteristic polynomial.

Note - If any row elements of the Routh table have some common factor, then you can
divide the row elements with that factor for the simplification will be easy.

The following table shows the Routh array of the n*" order characteristic polynomial.
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Example

Let us find the stability of the control system having characteristic equation,

54+353+352+25+1:ﬂ

Step 1 - Verify the necessary condition for the Routh-Hurwitz

stability. All the coefficients of the characteristic polynomial,

4 3 2
§°+3s7 +357 +25+1 are positive. So, the control system satisfies the necessary

condition.
Step 2 - Form the Routh array for the given characteristic polynomial.
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5 1 3 1
s 3 2
g2 (3x3)—(2x1) 7 (3x1)-(0x1) 3
) a4 T a
=1
sl (%xﬂ) —(1%3)
T
a
— 5
-7
s? 1

Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.

All the elements of the first column of the Routh array are positive. There is no sign
change in the first column of the Routh array. So, the control system is stable.
Special Cases of Routh Array

We may come across two types of situations, while forming the Routh table. It is difficult
to complete the Routh table from these two situations.

The two special cases are -

The first element of any row of the Routh’s array is zero.
All the elements of any row of the Routh’s array are zero.

Let us now discuss how to overcome the difficulty in these two cases, one by one.

First Element of any row of the Routh’s array is zero

If any row of the Routh’s array contains only the first element as zero and at least one of
the remaining elements have non-zero value, then replace the first element with a small
positive integer, €. And then continue the process of completing the Routh’s table. Now,

find the number of sign changes in the first column of the Routh’s table by substituting ee
tends to zero.
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Example

Let us find the stability of the control system having characteristic equation,
st+2s8 +s2+254+1=0

Step 1 - Verify the necessary condition for the Routh-Hurwitz
stability. All the coefficients of the characteristic polynomial,

s*+25° +55 +25+1=0
are positive. So, the control system satisfied the
necessary condition.

Step 2 - Form the Routh array for the given characteristic polynomial.

5 1 ! '
$3 21 =1

52 () _ g S

51

SU

The row s elements have 2 as the common factor. So, all these elements are divided by 2.
Special case (i) - Only the first element of row s?is zero. So, replace it by € and continue
the process of completing the Routh table.
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5 1 1
52 € 1
sl (ex1)—(1x1) _ el

€ €
5" 1

Step 3 - Verify the sufficient condition for the Routh-Hurwitz

stability. As € tends to zero, the Routh table becomes like this.

54 1 1 1
53 1 1

52 0 1

51 -

s? 1

There are two sign changes in the first column of Routh table. Hence, the control system is

unstable.

All the Elements of any row of the Routh’s array are zero

In this case, follow these two steps -
Write the auxilary equation, A(s) of the row, which is just above the row of zeros.

Differentiate the auxiliary equation, A(s) with respect to s. Fill the row of zeros with

these coefficients.
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Example

Let us find the stability of the control system having characteristic equation,
§° +35" +5° +352 +5+3=0

Step 1 - Verify the necessary condition for the Routh-Hurwitz stability.

All the coefficients of the given characteristic polynomial are positive. So, the control
system satisfied the necessary condition.

Step 2 - Form the Routh array for the given characteristic polynomial.

54 21 21 21

3 (1=1)—(1=1) 0 (1x1)—(1x1)

1 1 =0

The row s* elements have the common factor of 3. S0, all theze elements are
divided by 3.

3

Special case (i) — All the elements of row 8% are zero, So, write the auxiliary

equation, A=) of the row st

A(s) = s* + 5% +1
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— 45% + 25
ds
Place these coefficients in row s°.

s° 1 1 1
s 1 1 {
s 472 21
g2 {Exlj:{lxl}l — 0.5 (Exl}lg{ﬂxl] 1
gl (0.6x1)—(1=2) 15

0.5 0B

= —3

su 1

Step 3 - Verify the sufficient condition for the Routh-Hurwitz stability.

There are two sign changes in the first column of Routh table. Hence, the control system is
unstable.

In the Routh-Hurwitz stability criterion, we can know whether the closed loop poles are in
on left half of the ‘s’ plane or on the right half of the ‘s’ plane or on an imaginary axis. So,
we can’t find the nature of the control system. To overcome this limitation, there is a
technique known as the root locus.

Root locus Technique

In the root locus diagram, we can observe the path of the closed loop poles. Hence, we can
identify the nature of the control system. In this technique, we will use an open loop
transfer function to know the stability of the closed loop control system.
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Basics of Root Locus

The Rootlocus is the locus of the roots of the characteristic equation by varying system
gain K from zero to infinity.

We know that, the characteristic equation of the closed loop control system is

1+G(s)H(s) =10

We can represent G(s)H(s) as

Where,

2 K represents the multiplying factor

=

Mi{s) represents the numerator term having (factored) nth order
polynomial of 's’,

=l

D(s) represents the denominator term having (factored) mth order
polynomial of s,

Substitute, G(s)H(s) value in the characteristic equation,

N(s)

1+ k
D)

=0

= D(s) + KN(s) = 0
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Casel -~ K =0

If K =0, then D(s) = 0.

That means, the closed loop poles are equal to open loop poles when K is zero,
Case 2 - K=o

Re-write the above characteristic equation as

1 N(s)\ 1 Ni(s)
k(% D) =" & * Dy =

-

Substitute, K = oo in the above eqguation.

1 N N(s) N(s)

~ D) D)

— 0= N(s)=0

If K = oo, then N(s) = 0. It means the closed loop poles are equal to the open
loop zeros when K is infinity.

From above two cases, we can conclude that the root locus branches start at open loop
poles and end at open loop zeros.

Angle Condition and Magnitude Condition

The points on the root locus branches satisfy the angle condition. So, the angle condition is
used to know whether the point exist on root locus branch or not. We can find the value of
K for the points on the root locus branches by using magnitude condition. So, we can use
the magnitude condition for the points, and this satisfies the angle condition.

Characteristic equation of closed loop control system is

1+ G(s)H(s) = 0
~ G(s)H(s) —1 + jO

The phase angle of G(s)H (s) is

ZG(s)H(s) = tan 1 (—Ll— = (2722 + 1)7r

The angle condition is the point at which the angle of the open loop transfer function is an
odd multiple of 180°.
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Magnitude of G(s)H(s)G(s)H(s) is -
G H(s)| = /(-1 +0% =1

The magnitude condition is that the point (which satisfied the angle condition) at which
the magnitude of the open loop transfer function is one.

The root locus is a graphical representation in s-domain and it is symmetrical about the
real axis. Because the open loop poles and zeros exist in the s-domain having the values
either as real or as complex conjugate pairs. In this chapter, let us discuss how to construct
(draw) the root locus.

Rules for Construction of Root Locus

Follow these rules for constructing a root locus.
Rule 1 - Locate the open loop poles and zeros in the's’ plane.
Rule 2 - Find the number of root locus branches.

We know that the root locus branches start at the open loop poles and end at open loop
zeros. So, the number of root locus branches N is equal to the number of finite open loop
poles P or the number of finite open loop zeros Z, whichever is greater.

Mathematically, we can write the number of root locus branches N as

N=P if P>Z
N=Zif P<Z
Rule 3 - Identify and draw the real axis root locus branches.

If the angle of the open loop transfer function at a point is an odd multiple of 180°, then
that point is on the root locus. If odd number of the open loop poles and zeros exist to the
left side of a point on the real axis, then that point is on the root locus branch. Therefore,
the branch of points which satisfies this condition is the real axis of the root locus branch.

Rule 4 - Find the centroid and the angle of asymptotes.

If P=Z, then all the root locus branches start at finite open loop poles and end at
finite open loop zeros.

If P>Z, then Z number of root locus branches start at finite open loop poles and end
at finite open loop zeros and P-Z number of root locus branches start at finite open
loop poles and end at infinite open loop zeros.
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If P<Z, then P number of root locus branches start at finite open loop poles and end
at finite open loop zeros and Z-P number of root locus branches start at infinite
open loop poles and end at finite open loop zeros.

So, some of the root locus branches approach infinity, when P#Z. Asymptotes give the
direction of these root locus branches. The intersection point of asymptotes on the real

axis is known as centroid.

We can calculate the centroid a by using this formula,

3" Renl part of finite open loop poles —% Real part of finite open loop zeros
0=
P-Z

The formula for the angle of asymptotes 9 is

(2q + 1)180°
P-Z

=

Where,

Rule 5 - Find the intersection points of root locus branches with an imaginary axis.

We can calculate the point at which the root locus branch intersects the imaginary axis and the
value of K at that point by using the Routh array method and special case (ii).

If all elements of any row of the Routh array are zero, then the root locus branch

intersects the imaginary axis and vice-versa.

Identify the row in such a way that if we make the first element as zero, then the
elements of the entire row are zero. Find the value of K for this combination.

Substitute this K value in the auxiliary equation. You will get the intersection point
of the root locus branch with an imaginary axis.

Rule 6 - Find Break-away and Break-in points.

If there exists a real axis root locus branch between two open loop poles, then there
will be a break-away point in between these two open loop poles.
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If there exists a real axis root locus branch between two open loop zeros, then there

will be a break-in point in between these two open loop zeros.
Note - Break-away and break-in points exist only on the real axis root locus branches.
Follow these steps to find break-away and break-in points.

Write K in terms of s from the characteristic equation 1+G(s)H(s)=0.

Differentiate K with respect to s and make it equal to zero. Substitute these
values of ss in the above equation.

The values of ss for which the K value is positive are the break points.

Rule 7 - Find the angle of departure and the angle of arrival.

The Angle of departure and the angle of arrival can be calculated at complex conjugate
open loop poles and complex conjugate open loop zeros respectively.

The formula for the angle of departure ¢qis
ba = 180" — ¢

The formula for the angle of arrival @, is

ba = 180° + &
Where,
6= dp—> ¢z
Example
Let us now draw the root locus of the control system having open loop transfer
G(s)H(s) = —E
function, s(s+1)(s+5)

Step 1 - The given open loop transfer function has three poles ats = 0,
s =-1,s =-5.Itdoesn’t have any zero. Therefore, the number of root locus branches is

equal to the number of poles of the open loop transfer function.
N=P=3
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Root Locus Branch Root Locus Branch

L N

¢ Vi * >
-5 43 g @

Not a Root Locus Branch

The three poles are located are shown in the above figure. The line segment between s=-1,
and s=0 is one branch of root locus on real axis. And the other branch of the root locus on
the real axis is the line segment to the left of s=-5.

Step 2 - We will get the values of the centroid and the angle of asymptotes by using the
given formulae.

Centroid

_ I] ] i
The angle of asymptotes areﬂ = 607, 180" and 3007,

The centroid and three asymptotes are shown in the following figure.
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jw
A
Asymptote with 60%angle : Fg
Asymptote with 180%angle ,//

Centroid=-2
Asymptote with 300%angle \‘ L

Step 3 - Since two asymptotes have the angles of 600600 and 30003000, two root locus
branches intersect the imaginary axis. By using the Routh array method and special
case(ii), jv/B —Jv5.

the root locus branches intersects the imaginary axisat  and

There will be one break-away point on the real axis root locus branch between the poles s
=-1 and s=0. By following the procedure given for the calculation of break-away point, we
will getitas s =-0.473.

The root locus diagram for the given control system is shown in the following figure.

Break away
point=-0.473

In this way, you can draw the root locus diagram of any control system and observe the

movement of poles of the closed loop transfer function.
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From the root locus diagrams, we can know the range of K values for different types of
damping.

Effects of Adding Open Loop Poles and Zeros on Root Locus

The root locus can be shifted in ‘s’ plane by adding the open loop poles and the open loop
Zeros.

If we include a pole in the open loop transfer function, then some of root locus
branches will move towards right half of ‘s’ plane. Because of this, the damping
ratio 6§ decreases. Which implies, damped frequency wd increases and the time
domain specifications like delay time td, rise time tr and peak time tp decrease. But,
it effects the system stability.

If we include a zero in the open loop transfer function, then some of root locus
branches will move towards left half of ‘s’ plane. So, it will increase the control
system stability. In this case, the damping ratio & increases. Which implies,
damped frequency wd decreases and the time domain specifications like delay time
td, rise time tr and peak time tp increase.

So, based on the requirement, we can include (add) the open loop poles or zeros to the
transfer function.
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Example

3 425+ K =0

S = ]m
f
o =36 4 2+ K = (K- 30%)— jo{@? —2)= 0 {\—jﬁ
K=6
W =2
K =30'=6 A -1/ ]
-0.423
N W2
N\
Example Two poles at -1
rps s K(E+2) One zero at -2
GH(s) = (2+1)° One asymptote at 180°
) Break-in point at -3
21
B+l Pp+2
2p+4=p+1
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Example Why a circle ?

Characteristic equation g% 4 g(2 4+ K)+ 2K +1=0
For K<4 ForK=4

i —(2+K)+/K(K-4
:—(E+I{)J_rj K(4-K) . (2+K) m
T

-

—(—2+K)* ),/K(4-K)
2

12

Change of origin = s ,+2=
4m=(K-2)+K(A4-K)=K*-4K+4+4K-K*

m=1
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UNIT-V

FREQUENCY RESPONSE ANALYSIS

Whatis Frequency Response?

The response of a system can be partitioned into both the transient response and the
steady state response. We can find the transient response by using Fourier integrals. The
steady state response of a system for an input sinusoidal signal is known as the frequency
response. In this chapter, we will focus only on the steady state response.

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it
produces the steady state output, which is also a sinusoidal signal. The input and output
sinusoidal signals have the same frequency, but different amplitudes and phase angles. Let
the input signal be

r(t) = A sin(wypt)
The open loop transfer function will be —
C(s) = G(jw)
Wie can represent (G jw) in terms of magnitude and phase as shown below.
Gljw) = |Gjw) | £G(jw)
Substitute, w = wy in the above equation,
Gjwn) = |GlJw) | LG (jwo)
The output signal is
c(t) = A[G(jwy)| sin(wet + LG (juwn))

2 The amplitude of the output sinusoidal signal is obtained by multiplving
the amplitude of the input sinuscidal signal and the magnitude of G(jw)
atw = wy .

2 The phase of the output sinusoidal signal is obtained by adding the
phase of the input sinusoidal signal and the phase of Gjw) at w = wy.

Where,
A is the amplitude of the input sinusoidal signal.
wo is angular frequency of the input sinusoidal

signal. We can write, angular frequency wo as shown
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below.
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(1)0=2T[f0

Here, fois the frequency of the input sinusoidal signal. Similarly, you can follow the same
procedure for closed loop control system.

Frequency Domain Specifications

The frequency domain specifications are

Resonant peak
Resonant frequency
Bandwidth.

Consider the transfer function of the second order closed control system as

C'(s) wa
R(s) 52 4+ 20w, 5 + w2

Substitute, s = jw in the above equation.

. wd

T{JW} = I['.Ld}lg N 2o { ) 9

J m (Jw) + wy

= () = wh _ wp
= —w? + 2§y +w? B Wl (1_ w? +@)
T DL.E, iy
) 1
= T(jw) =

2 (2w
(1-2) +i(3)
Let, % = u Substitute this value in the above equation.

1

T(w) = (1—u?) +j(260)

Magnitude of T'(jw) is -

1

W= = = T ey

Phasze of T'(jw) is -
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24
£T(jw) = —tan™! ( e )
1— u?
Resonant Frequency

It is the frequency at which the magnitude of the frequency response has peal

value for the first time. It is denoted by w, . At w = w,, the first derivate of the
magnitude of T'(jw) iz zero.

Differentiate M with respect to w.

% B _%[{1 —u?)? 4 (260)7]) 7 [2(1 — u?)(—2u) + 2(26u) (26)]
- % a _%[{1 —u?)? 4 (26u)?] 7 [4u(a’ — 1+24%)]

Substitute, © = w, and % == 0 in the above equation,

0= 11—t + o)) F [ — 1+ 267)]

= du, (uf — 1 +24%) =0
= u?—1+262=0

— w2 =1-— 242

Substitute, w, = :—' in the above equation,

= Wy = Wn vV 1 - 26

Resonant Peak

It is the peak (maximum) value of the magnitude of T(jw). It is denoted by
M:. At u=ur, the Magnitude of T(jw) is -
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1
V(1 = u)? + (26u,)?

ﬂfr =

Substitute, u, = V1 — 242 and 1 — u2 = 2462 in the above equation.

M, 2

v"r{-Zc'Fz-]l-z- f {2!;?\,-“1 = 2-5-172- }2-

= M, = !
24+v'1 — 42

Resonant peak in frequency response corresponds to the peak overshoot in the time
domain transient response for certain values of damping ratio 6. So, the resonant peak
and peak overshoot are correlated to each other.

Bandwidth

It is the range of frequencies over which, the magnitude of T(jw) drops to 70.7% from its zero
frequency value.

At w=0, the value of u will be zero.

Substitute, u=0 in M.

M = L =1

\/(1=0%)2 +(25(0))?

Therefore, the magnitude of T(jw) is one at w=0

At 3-dB frequency, the magnitude ofT(f'w) will be 70.7% of magnitude of T(jw)) at w=0
e, atw=wp, M =0.707(1) = i
1 1
= M = = = .
V2 V(1= u)? + (20w)?

=2 = (1—ud)? + (26)%u?
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=2=(1—2) +(26)%

=l 4 (462 -2z —1=10

—(46% —2) £ /(462 —2)2 +4
2

= T =

Consider only the positive value of x.

z=1-26% 1+ x,.-“'{zaﬂ —1)? 41

—x=1-2§2 ¢ L,.-“'{z — 442 + 45%)

- 2
Substitute, @ = uy = )

w? /
= =126 4 /(2 — 46% + 44
] v

= Wy = wn, \f,.-"'1 267+ /(2 - 407 + 46

Bandwidth wb in the frequency response is inversely proportional to the rise time tr in
the time domain transient response.
Bode plots

The Bode plot or the Bode diagram consists of two plots -
Magnitude plot

Phase plot

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis
represents the magnitude (linear scale) of open loop transfer function in the magnitude
plot and the phase angle (linear scale) of the open loop transfer function in the phase plot.

The magnitude of the open loop transfer function in dB is -

M =20 log |G(jw) H (jw)]
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The phase angle of the open loop transfer function in degrees is -
¢ = LG (jw)H(juw)

Basic of Bode Plots

The following table shows the slope, magnitude and the phase angle values of the terms
present in the open loop transfer function. This data is useful while drawing the Bode

Type of G{juIH(jm) Slope{(dB fdec) Magnitude Phase
term {dB) angle{degrees)
Constant K 0 20 log K 0
Zero at Jew 20 20 log w 90
arigin
‘N’ zeros { geo)™ 207 20 2 log w 90
at origin
Pole at ﬁ —20 —20 log w —90 or 270
origin
‘N’ poles ﬁ —20 7 —20 1 log w —90 72 or 270
at origin T
Simple 14 jer 20 0 forw 0 forw < ?_l
1
=er =7 90 forw = ?_l
20 logewr

1
forw = =

plots.
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Simple
pole

Second
order
derivative
term

Second
order

integral
term

w%(l—% 40

1 _40

CONTROL SYSTEMS

0 forw
1
—20 logwr

1
forw} Py

40 log wy,
forw < wy
20 log
(20ws) for
W= Wy

40 log w

forw > wy

—40 log wy
forw < wy
—20 log
(20w2) for
W= Wy
—40 log w

forw > wy

0 forw < %

—90 or 270
forw > %

0 forw < wy
90 forw = wy

180 forw
> Wy

—0 forw
<

—90 forw
= Wy

—180 forw
> Wy,



Consider the open loop transfer function G(s)H(s) = K.
Magnitude M = 20 log K dB

Phase angle ¢ = 0 degrees

If K = 1, then magnitude is O dB.

If K > 1, then magnitude will be positive.

If K < 1, then magnitude will be negative.

The following figure shows the corresponding Bode plot.

M (dB)
A
' |
20log K |-----=====mmmmmmmmmmeeee-
K=1
>
g log w
—2010g K |------====mmmmmmemmmeeeeem
0<K<1
0 (degrees)
A
0<K<o
0 >
log w

The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line
itself is the magnitude plot when the value of K is one. For the positive values of K, the
horizontal line will shift 20logK dB above the 0 dB line. For the negative values of K, the

horizontal line
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will shift 20logK dB below the 0 dB line. The Zero degrees line itself is the phase plot for all
the positive values of K.

Consider the open loop transfer function

G(s)H(s)=s Magnitude M=20logw dB

Phase angle $=90°

At w=0.1rad/sec, the magnitude is -20

dB. At w=1rad/sec, the magnitude is 0 dB.

At w=10 rad/sec, the magnitude is 20 dB.
The following figure shows the corresponding Bode plot.

M (dB)
A
20 +
>
0(0.1 1 10 log @
20 -
? (degrees)
A
90
0 ¥
log w

The magnitude plot is a line, which is having a slope of 20 dB/dec. This line
started at w=0.1rad/sec having a magnitude of -20 dB and it continues on the same slope.
It is touching 0 dB line at w=1 rad/sec. In this case, the phase plotis 90°line.

Consider the open loop transfer function

G H(s) =1 Mdiagyd + w2 dB

CONTROL SYSTEMS



¢ = tan~! wr degrees
Phase angle

1
W<~
For T , the magnitude is 0 dB and phase angle is 0 degrees.
- 1
For T, the magnitude is 20logwt dB and phase angle is

90°. The following figure shows the corresponding Bode plot

M (dB)
A
20 +
&
0 4 10 log w
® (degrees)
A
90
0 B
10 log w

S -

The magnitude plot is having magnitude of 0 dB upto w=1tw=1t rad/sec. From w=1t
rad/sec, it is having a slope of 20 dB/dec. In this case, the phase plot is having phase angle
of 0 degrees up to w=1t rad/sec and from here, it is having phase angle of 90°. This Bode
plotis called the asymptotic Bode plot.

As the magnitude and the phase plots are represented with straight lines, the Exact Bode
plots resemble the asymptotic Bode plots. The only difference is that the Exact Bode plots
will have simple curves instead of straight lines.



Similarly, you can draw the Bode plots for other terms of the open loop transfer function
which are given in the table.

Rules for Construction of Bode Plots

Follow these rules while constructing a Bode plot.
Represent the open loop transfer function in the standard time constant form.

Substitute, s=jws=jw in the above equation.
Find the corner frequencies and arrange them in ascending order.

Consider the starting frequency of the Bode plot as 1/10™ of the minimum corner
frequency or 0.1 rad/sec whichever is smaller value and draw the Bode plot upto
10 times maximum corner frequency.

Draw the magnitude plots for each term and combine these plots properly.
Draw the phase plots for each term and combine these plots properly.

Note - The corner frequency is the frequency at which there is a change in the slope of
the magnitude plot.

Example

Consider the open loop transfer function of a closed loop control syste

10s
(s +2)(s +5)

Let us convert this open loop transfer function into standard time constant
form.

10s
2(§+1)5(§+1)

G(s)H(s) =

g

B Fry Yy

S0, we can draw the Bode plot in semi log sheet using the rules mentioned
earlier.



Stability Analysis using Bode Plots

From the Bode plots, we can say whether the control system is stable, marginally stable or
unstable based on the values of these parameters.

Gain cross over frequency and phase cross over frequency
Gain margin and phase margin
Phase Cross over Frequency

The frequency at which the phase plot is having the phase of -180° is known as phase
cross over frequency. It is denoted by wp.. The unit of phase cross over frequency is
rad/sec.

Gain Cross over Frequency

The frequency at which the magnitude plot is having the magnitude of zero dB is
known as gain cross over frequency. It is denoted by wg.. The unit of gain cross over
frequency is rad/sec.

The stability of the control system based on the relation between the phase cross over
frequency and the gain cross over frequency is listed below.

If the phase cross over frequency wy. is greater than the gain cross over frequency
wgc, then the control system is stable.

If the phase cross over frequency wy. is equal to the gain cross over frequency wegc,
then the control system is marginally stable.

If the phase cross over frequency wy. is less than the gain cross over frequency wgc,
then the control system is unstable.

Gain Margin

Gain margin GMGM is equal to negative of the magnitude in dB at phase cross over frequency.

GM=20log(1Myc)=20logMp.

Where, MpcMpc is the magnitude at phase cross over frequency. The unit of gain margin
(GM) is dB.
Phase Margin

The formula for phase margin PMPM is
PM:18OO+¢gc

Where, ¢pgcis the phase angle at gain cross over frequency. The unit of phase
margin is degrees.



NOTE:

The stability of the control system based on the relation between gain margin and phase
margin is listed below.

If both the gain margin GM and the phase margin PM are positive, then the control
system is stable.

If both the gain margin GM and the phase margin PM are equal to zero, then the
control system is marginally stable.
If the gain margin GM and / or the phase margin PM are/is negative, then the
control system is unstable.
Polar plots
Polar plot is a plot which can be drawn between magnitude and phase. Here, the
magnitudes are represented by normal values only.
The polar form of G(jw)H (jw) is

Gjw)H(jw) = |G (jw) H (jw)

LG (jw)H (jw)

The Polar plot is a plot, which can be drawn between the magnitude and the
phase angle of G(jw)H (jw) by wvarying w from zero to co. The polar graph
sheet is shown in the following figure,

105° 75°

120° 60°
N 7
135° Y, ase
SN bz
150° = 30°
N x =
165° = \ \ \ = 15°
‘f - & . \ '.I “‘ \
o_— — | | | | .‘ | | | | | -
200 7 6 ] i 2 3 a 5] 6] 7
= \ . Y IR (0 Y =
195° = [ T=3a5°
- \'\..
210° B 3300
% T
RIS 315°
/ R
240° Y 300°

rS5e IRGO
255 270 285



This graph sheet consists of concentric circles and radial lines. The concentric circles
and the radial lines represent the magnitudes and phase angles respectively. These
angles are represented by positive values in anti-clock wise direction. Similarly, we can
represent angles with negative values in clockwise direction. For example, the angle 270°
in anti-clock wise direction is equal to the angle -90°in clockwise direction.

Rules for Drawing Polar Plots

Follow these rules for plotting the polar plots.

Substitute, s=jw in the open loop transfer function.

Write the expressions for magnitude and the phase of G(jw)H(jw)

Find the starting magnitude and the phase of G(jw)H(jw) by substituting w=0. So,
the polar plot starts with this magnitude and the phase angle.

Find the ending magnitude and the phase of G(jw)H(jw) by substituting w=00 So,
the polar plot ends with this magnitude and the phase angle.

Check whether the polar plot intersects the real axis, by making the imaginary
term of G(jw)H(jw) equal to zero and find the value(s) of w.

Check whether the polar plot intersects the imaginary axis, by making real
term of G(jw)H(jw) equal to zero and find the value(s) of w.

For drawing polar plot more clearly, find the magnitude and phase of G(jw)H(jw) by
considering the other value(s) of w.

Example

Consider the open loop transfer function of a closed loop control system.

5

G Hs) = T

Let us draw the polar plot for this control system using the above rules,
Step 1 — Substitute, s = jw in the open loop transfer function,

5

Gl qen) H (o) =
(o) H (jew) jw(jew + 1) (Jew + 2)

The magnitude of the open loop transfer function is
5
wilvew?2 + 1) (v'ew? + 4)

M =

The phase angle of the copen loop transfer functicon is

@ = —00" —tanlw — tan—?

ta| £



Frequency (rad/sec) Magnitude Phase angle{degrees)
o es] -390 or 270

e o =270 or 90

So, the polar plot starts at (c0,-909) and ends at (0,-270°). The first and the second terms
within the brackets indicate the magnitude and phase angle respectively.

Step 3 - Based on the starting and the ending polar co-ordinates, this polar plot will
intersect the negative real axis. The phase angle corresponding to the negative real axis is
-180°%or 180°. So, by equating the phase angle of the open loop transfer function to either
-180°0r 180°, we will get the w value as V2.

By substituting w=v2 in the magnitude of the open loop transfer function, we will get
M=0.83. Therefore, the polar plot intersects the negative real axis when w=v2 and the
polar coordinate is (0.83,-1809).

So, we can draw the polar plot with the above information on the polar graph sheet.

Nyquist Plots

Nyquist plots are the continuation of polar plots for finding the stability of the closed loop
control systems by varying w from -oo to co. That means, Nyquist plots are used to draw
the complete frequency response of the open loop transfer function.

Nyquist Stability Criterion

The Nyquist stability criterion works on the principle of argument. It states that if there
are P poles and Z zeros are enclosed by the ‘s’ plane closed path, then the
corresponding G(s)H(s)G(s)H(s) plane must encircle the origin P-ZP-Z times. So, we can

write the number of encirclements N as,
N=P-ZN=P-7Z

If the enclosed ‘s’ plane closed path contains only poles, then the direction of the
encirclement in the G(s)H(s)G(s)H(s) plane will be opposite to the direction of the
enclosed closed path in the ‘s’ plane.

If the enclosed ‘s’ plane closed path contains only zeros, then the direction of the
encirclement in the G(s)H(s)G(s)H(s) plane will be in the same direction as that of
the enclosed closed path in the ‘s’ plane.



Let us now apply the principle of argument to the entire right half of the ‘s’ plane by
selecting it as a closed path. This selected path is called the Nyquist contour.

We know that the closed loop control system is stable if all the poles of the closed loop
transfer function are in the left half of the ‘s’ plane. So, the poles of the closed loop transfer
function are nothing but the roots of the characteristic equation. As the order of the
characteristic equation increases, it is difficult to find the roots. So, let us correlate these
roots of the characteristic equation as follows.

The Poles of the characteristic equation are same as that of the poles of the open
loop transfer function.

The zeros of the characteristic equation are same as that of the poles of the closed
loop transfer function.

We know that the open loop control system is stable if there is no open loop pole in the
the right half of the ‘s’ plane.

i.e,P=0=>N=-ZP=0=>N=-Z
We know that the closed loop control system is stable if there is no closed loop pole in the
right half of the ‘s’ plane.

i.e,Z=0=>N=PZ=0=>N=P

Nyquist stability criterion states the number of encirclements about the critical point
(14j0) must be equal to the poles of characteristic equation, which is nothing but the poles
of the open loop transfer function in the right half of the ‘s’ plane. The shift in origin to
(1+4j0) gives the characteristic equation plane.

Rules for Drawing Nyquist Plots
Follow these rules for plotting the Nyquist plots.

e Locate the poles and zeros of open loop transfer function G(s)H(s) in ‘s’ plane.

e Draw the polar plot by varying w from zero to infinity. If pole or zero present at s =
0, then varying w from 0+ to infinity for drawing polar plot.

e Draw the mirror image of above polar plot for values of w ranging from -oo to zero
(0~ if any pole or zero present at s=0).

e The number of infinite radius half circles will be equal to the number of poles or
zeros at origin. The infinite radius half circle will start at the point where the
mirror image of the polar plot ends. And this infinite radius half circle will end at
the point where the polar plot starts.



After drawing the Nyquist plot, we can find the stability of the closed loop control system
using the Nyquist stability criterion. If the critical point (-1+j0) lies outside the
encirclement, then the closed loop control system is absolutely stable.

Stability Analysis using Nyquist Plots

From the Nyquist plots, we can identify whether the control system is stable, marginally
stable or unstable based on the values of these parameters.

Gain cross over frequency and phase cross over frequency
e Gain margin and phase margin

Phase Cross over Frequency

The frequency at which the Nyquist plot intersects the negative real axis (phase angle is
180°) is known as the phase cross over frequency. It is denoted by wp..
Gain Cross over Frequency

The frequency at which the Nyquist plot is having the magnitude of one is known as the
gain cross over frequency. It is denoted by wgc.

The stability of the control system based on the relation between phase cross over
frequency and gain cross over frequency is listed below.

o Ifthe phase cross over frequency wpc is greater than the gain cross over frequency

wgc, then the control system is stable.

o If the phase cross over frequency wpc is equal to the gain cross over frequency wgc,

then the control system is marginally stable.

o If phase cross over frequency wpc is less than gain cross over frequency wgc, then

the control system is unstable.
Gain Margin
The gain margin GM is equal to the reciprocal of the magnitude of the Nyquist plot at the

phase cross over frequency.

1
M,

GM =

Where, Mpc is the magnitude in normal scale at the phase cross over frequency.
Phase Margin

The phase margin PM is equal to the sum of 180°and the phase angle at the gain cross
over frequency.



PM=1800+¢gc

Where, ¢gcis the phase angle at the gain cross over frequency.

The stability of the control system based on the relation between the gain margin and the
phase margin is listed below.

o Ifthe gain margin GM is greater than one and the phase margin PM is positive, then
the control system is stable.

o Ifthe gain margin GMs equal to one and the phase margin PM is zero degrees, then
the control system is marginally stable.

o Ifthe gain margin GM is less than one and / or the phase margin PM is negative,
then the control system is unstable.






