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CHAPTER 1.0 
 

 
1.1 - Types of Load 

 
SIMPLE STRESS AND STRAIN 

Load is an external force. Hydraulic force, steam pressure, tensile force, compressive force, 

shear force, spring force and different types of load. Again load may be classified as live load, dead 

load. 

Definition 

Strength of material is the study of the behaviour of structural and machine members under 

the action of external loads, taking into account the internal forces created and resulting deformation. 

Types of load 

The simplest type of load (P) is a direct pull or push, known technically as tension or 

compression. 

P P 

X 

P P 

If a member is in motion the load may be caused partly by dynamic or inertia forces. For 

instance, the connecting Rod of a reciprocating engine, load on a fly wheel. 

STRESS 

 Definition 

The Force transmitted across any section, divided by the area of that section, is called intensity 

of stress or stress. 
X 

 

 
 

 
Where 

P 

 

σ = P 
A 

P 

σ A σ A 

 

X 

σ - Stress 

P - Load 

A - Area 

σ A - Internal forces of cohesion 

Direct stress (Tensile / compressive) 

Stresses which are normal to the plane on which they act are called direct stresses and 

either tensile or compressive. 

Unit - N / m2 

STRAIN 

Stain is a measure of the measure of the deformation produced in the member by the load. 

If a rod of length L is in tension and the elongation produced is L, then the direct 

Elongation 
 

 Strain = 
Original 

length 

s=X 
L 

Tensile strain will be positive compressive strain will be negative. 



 

 
Hooke’s Law 

This states that strain is proportional to the stress producing it. 

A material is said to be elastic if all the deformations are proportional to the load. 

Principle of superposition 

It states that the resultant strain will be the sum of the individual strains caused by each load 

acting separately. 

Young’s Modules 

Within the limits for which Hooke’s law is obeyed, the ratio of the direct stress to the strain 

produced is called young’s modules or the modules of Elasticity, i.e. E = E= 
σ 

s 

For a bar of uniform cross-section A and length L this can be written as E= 
PL 

or 
PL 

= X 

AX AE 

Tangential Stress 

If the applied load persists of two equal and opposite parallel forces not in the same line, then 

there is a tendency for one part of the body to slide over or shear from the other part across any 

section LM. 

 
 

 
P 

 

τ = 
P 

A 

P 

Area of gross section 

is parallel to load 

Shear stress is tangential to the area over which it acts. 

Every shear stress is accompanied by an equal complementary shear stress. 

Shear Strain 
 
 
 
 

 

The shear strain or slide is φ, and can be defined as the change in the right angle. It is 

measured in radians. 

Modules of rigidity 

For elastic material shear strain is proportional to the shear stress. 
 

Ratio 
Shear Stress 

= Modulesof rigidity 
Shear Strain 

 

Ratio G = 
τ 

φ 
N/mm2 

L M 

 

) 



 

 
1.2 Stresses in composite section 

 

Any tensile or compressive member which consists of two or more bars or tubes in parallel, 

usually of different materials in called compound bars. 

Analysis 

A compound bar is made up of a rod of area A, and modules E1 and a tube of equal length of 
area A2 and modules E2. If a compressive load P is applied to the compound bar find how the load 
is shared. Since the road and tube are of the same initial length and must remain together then the 
strain in each part must be the same. The total load carried is P and let if be shared W1 and W2, 

s1 =s2 ,L1=L2 
 

compatibility equation : 
W1  = 

A1 E1 

W1 

A 2 E2 

Equilibrium equation : W1 + W2 = P 

 
Substituting, W2 = 

 

A 2 E 2 

A 1 E 1 

 
x W 1 

f r o m ( i ) & ( i i ) g iv e n W( 1 + 
A 2 E 2)= P o r  

1 

 

W = 
P A 1 E 1 

 

 

A 1 E 1 

1
 A E + A E 

1 1 2 2 

T h e n W = P  A 2 E 2 
 2

 A E + A E 
 

Example 

1 1 2 2 

A composite bar is made up of a brass rod of 25m diameter enclosed in a steel tube, being 

co-axial of 40mm external diameters and 30mm internal diameter as shown below. They are securely 

fixed at each end. If the stress in brass and steel are not to exceed 70MPa and 120 MPa respectively 

find the load (P) the composite bar can safely carry. 

 

 
P   P 

 

 

Also find the change in length, if the composite bar is 500mm long. Take E for steel Tube as 

200 GPa and brass rod as 80 GPa respectively. 

Data Given 

Let steel tube denoted as 1 and brass rod denoted as 2 

d10= 40mm E1 = 200GPa 

d1i = 30mm E2 = 80 GPa 

d2 = 25mm 

σ 1= 120 MPa W1 - Load carried by tube 

σ 1= 70 MPa W2 - Load carried by rod. 

  

 
 

 

25mm 

 

  

500 mm 

 



P P 

 

 
From compatibility equation : 

W
1 = 

A
1

E
1 

W
2 

A
2 

E
2 

A = 
π 

(d
2 

– d
2 

) = 
π 

(40
2 

– 30
2 

) 

1 4 1
O 

1
i 4 

 A
1 
= 500mm

2 

and A = 
π 

25 
2 

= 491mm
2 

2 4 

Now putting in equation –(1) 

 W = W x 
550 x 200 

1 2 491x 80 

 W
1 
= 2.8W

2 

W
1 

= σ
1 

A
1 

=120 x 550 = 66000N 

W 66000 
and W = 1 = = 2357N 

2 2.8 
 

 

2.8 

From equlibrium equation 

P = W
1 
+ W

2 

= 66000 + 2357 = 89.57 KW (Ans) 

Change inlength 

W  66000 x 500 
δ  = δ  = 1 1 = = 0.3mm 

1 2 A
1

E
1 550 x 200 x10

3 

Poisson’s Ratio 

The ratio between lateral strain to the liner strain is a constant which is known as poisson’s 

ratio. 

The symbol is ‘ µ’. 

Bulk Modules 

When a body is subjected to three mutually perpendicular stresses of equal intensity the 

ratio of direct stress to the corresponding volumetric strain is known as bulk modules. 

P 

 

Fig. K = 
–P 

 
 

δV / V 

P - hydrostatic pressure 

(-) - negative sign taking account of the reduction in volume. 



 
C 

  
σ 

45
0
 

B 

  

  

2 

2 

 

 
Relation between K and E 

The above figure represents a unit cube of material under the action of a uniform pressure P. 

It is clear that the principle stresses are -P, -P and -P and the linear strain in each direction is 

-P/E + µP/E + µP/E = 
– P 

A 
(1-2 µ) 

But we know 

Volumetric strain = sum of linear strain 
 

 

By defination K = 
– P 

 
 

δV / V 

 

 
o r K 

 

 
o r K 

= 
– P 

– 3 P 
(1 – 2 µ ) 

E 

= 
E 

3 (1 – 2 µ ) 

 

or E = 3K (1-2 µ) 

Relation between E and G 
 
 
 
 
 

 

 
A 

 

σ 

It is necessary first of all to establish the relation between a pure shear and pure normal 

stress system at a point in an elastic material. 

In the above figure the applied stresses are σ tensile on AB and σ compressive on BC. If the 

stress components on a plane AC at 450 to AB are σ θ and τ θ Then the forces acting are as 

shown taking the area on AC as units. 

Resolving along and at right angle to AC 

 

τ θ = 
σ 

Sin 45 + 
σ 

Cos 45 = σ 

σ σ 
andσ θ = Cos 45 – Sin 45 = 0 

 
So a pure shear on planes at 450 to AB and BC. 



+ 

 

σ 

A 
E 

B 

 
 

 

σ  H F  σ 
 
 

 
D G C 

σ 
This figure shows a square element ABCD, sides of unstrained length 2 units under the 

action of equal normal stresses, σ tension & compression. then it has been shown that the element 

EFGH is in pure shear of equal magnitude σ . 

Liner s tra in in direc tion E G = 
σ 

+ 
µσ 

E E 

S a y s = 
µ 

(1 + µ ) 
E 

Liner s train in d ire ctio n H F = – 

 

 
σ 

– 
µσ 

= – s 
E E 

Hence the strained lengths of EO and HO are I + ε and I - ε respectively. 

The shear strain φ= 
σ 

G 

on one element EFGH and the angle EHG will increase by to 
π
+φ and angle EHO = 

π φ 

4 4 2 

Considering the triangle tan EHO = 
E0 

H0 

tan( 
π 

+ 
φ

) = 
1+ s 

4 2 1– s 
tan 

π 
+ tan 

φ 

1+ s 
= tan 

1– s 
1– 

1+ 
φ 

=  2 

1– 
φ 

2 

 
  

4 2 
π φ 

tan  .tan  
4 2 

s = 
φ 

2 

(1+ µ) 
σ 

= 
σ 

s 2G 

then rearranging E= 2G (1+ µ) 

by removing µ, E = 
9GK 

G + 3K 

 

σ 
π

+
φ 

4 2 

 
σ 

1+E 

1 - E 

σ 

 

σ 

 



2 2 2 2 

 

 
1.3 Temperature stress 

Determination of temperature stress in composite bar (single core). 

Temperature stresses in Composite Bar 

If a compound bar made up of several materials is subjected to a change in temperature 

there will be tendency for the components parts to expand different amounts due to the unequal co- 

efficient of thermal expansion. If the parts are constrained to remain together then the actual change 

in length must be the same for each. This change is the resultant of the effects due to temperature 

and stresses condition. 

Now let σ 1 = Stress in brass 

s 1 = Strain in brass 

α 1 = Coefficient of liner expausion for brass 

A1 = Cross sectional area of brass bar 

and σ , s , α , A = Corresponding values for steel. 

s = Actual strain of the composite bar per unit length. 

As compressive load on the brass in equal to the tensile load on the steel, therefore 

σ 1. A1 = σ 2. A2 

strain in brass s 1 = α 1 t - s 

s 2= s - α 2 t 
2 

s 1 
+ s 2 

= α1 
t 

1
+ α 2 t 

2 
= t (α1 – α2 ) 1 

 
Thermal stresses in simple bar 

Let L = original length of the body 

 t = Increase in temperature 

α = Coefficient of liner expansion. 

We know that the increase in length due to increase of temperature 

δL = Lα  t 

s = 
δL 

= 
Lα  t 

= α  t 
L L 

Stress σ = sE 

 
Example -1 

An aluminium alloy bar fixed at its both ends is heated through 20K find the stress developed 

in the bar. Take modules of elasticity and coefficient of linear expansion for the bar material as 80 

GPa and 24 X 10-- 6/K respectively. 

Data Given 

 t = 20K 

E = 80GPa = 80 X 103 N/mm2 

α = 24 X 10-- 6/K 



α =12x10 

 

 
Solution 

Then the thermal stress 

σ t = α  t E = 24 x 10 
–6

x20x80x10
3
 

= 38.4 N / mm
2
 = 38.4 mPa 

Example - 2 

A flat steel bar 200mm X 20mm X 8mm is placed between two aluminium bars 200mm X 

20mm X 6mm. So as to form a composite bar. All the three bars are fastened together at room 

temperature. Find the stresses in each bar where the temperature of the whole assembly in raised 

through 50
0c, Assume E =200GPa, E =80GPa, αs =12x10–6/0 c, αa =24x10–6/0 c 

s a 

Data given 

Aluminium 6mm 

Steel 8mm 

Aluminium 6mm 

 t = 500c, Es = 200GPa = 200 x 103 N/mm2 

sa=80GPa = 80 x 103 N/mm2 

-6 0 -6 0 

s 
/ c, α

a 
=24 x10 / c 

Solution 

As = 20 x 8 = 160 mm2 

Aa = 2 x 20 x 6 = 240 mm2 

α = 
Aa 

xσ A = 
240 

xσ A =1.5 σ A 
s As 160 

ss = 
σ s = 

σ s 
  

ss 200 x103 

sa= 
σ a = 

σ a 
  

sa 80 x10 3 

ss +sa = t(αa –αs) 

σ s 

200x10
3 

+ 
σ a 

80 x10 
3 

=50(24 x10 
–6–12x10 

–6
) 

 
or , 

1.5 σ a 

200x103 
+ 

σ a 

80 x10 3 

= 50 x12 x10 –6 

 a= 30N / mm
2 = 30MPa 

σ 
a
=1.5 σ 

a
=1.5 x 30= 45 N / mm

2 
= 45MPa 



suddenly applied load 

 

 
1.4. Strain energy resilience stress due to gradually applied load, 

and compact load. 

P 

 
Load 

 

 

 
Strain Energy 

X 

Extension 

The strain energy (U) of the bar is defined as the work done by the load in strain it. 

For a gradually applied load or static load the work done is represented by the shaded area in 

above figure. 

U = 
1 

P. X 
2 

U = 
1 

σA 
σ 

L 
2 E 

= 
1 

σ 
2
 A L = 

1σ 
Vol. 

2E 2E 

Resilience 

The strain energy per unit volume usually called as resilience in simple tension or compression 
 

σ2 

is 
2E 

. 

Proof resilience 

It is the value at the elastic limit or at the proof stress for non-ferrous materials. 

Strain energy is always a positive quantity and being work units will be expressed as Nm (i.e. 

joules) 

Example 1 

Calculate the strain energy of the bolt as shown below under a tensile load of 10 KN. Show 

that the strain energy is increased for the same max stress by turning down the same of the bolt to 

the root diameter of the turned, E=20500 N/mm2 

Data Given 
 
 
 
 

 
P= 10 KN, E= 205,000 N/mm2 

Solution 

It is a normal practice to assume that the load is distributed events over the core. 

A = 
π 

16.6
2
 = 217 mm

2
 

c 
4  

P 
Stress in screwed portion = 

c 

=
10,000 

= 46N/ mm
2
 

217 

P 
Stress in shank = 

C 

= 
10,000 

= 31.8N / mm
2
 

π 
20

2
 

4 

50mm 

( 
( 

166mm 20mm 

( 
25mm 

A 

A 



 
 

 

Total strain Energy = 

If turned to 16.6m m 

1 
 

 

2 x 205000 
( 46

2
 x 210 x 25 + 31.8

2
 x 314 x50) = 67N / m m 

2
 

S.E = 
1 

 
 

2 x 205000 
( 46

2
 x 217 x75) = 84N / m m 

 
Impact load 

 
 
 
 
 
 
 
 

 
Supposing a weight W falls through a height ‘h’ on to ‘a’ collar attached to one end of a 

uniform bar, the other end being fined. Then an extension will be caused which is greater than that 

due to one application of the same load gradually applied. 

Let X is the maximum extension, set up and the corresponding strain is σ . 

Let P be the equivalent static load which would produced the same extension X. 

 

Then the strain energy at this instant = E1= 
1 

(σ – µσ ) 

E 
1 2 

or E1= 
Pd 

4t1E 
(2 – µ) 

Neglecting loss of energy at compact loss of PE of weight = Gain of strain energy. 

w (h + x) = 
1 

Px 
2 

or w(h + 
PL 

) = 
1 

P
2
L / AE 

AE 2 

Re arrangingandmultiplying through AE / L 

P
2
 / 2 – WP – WhAE / L = 0 

Solvingand discarding thenegativeroot 

P = W + 

= W [1+ 1+ 2hAE / WL] 

From which X = 
PL 

,σ = 
P 

canbe found 
AE A 

Whenh = 0,P = 2W 

i.e. the stress produced by a suddenly applied load is twice the static stress. Ex- Referring 

figure-1, let a mass of 100Kg falls 4cm on to a collar attached to a bar of 2 cm dia, 3mm long find 

max stress, E= 205,000N/mm2 

σ= 
P 

= 
W 

[1+ 
A A 

 

1+ 2hAE / WL] 

= 
981 

, [1+ 
100π 

1+ 
2 x 40 x π100 x 205000 

] 
981x 3 x1000 

=134N / mm
2
 

W 
2
 + 2WGAE / L 

L Area A 

 
W 

G 

X 



P 
2) 

 

 
CHAPTER 2.0. 

THIN CYLINDER AND SPHERICAL SHELL 

UNDER INTERNAL PRESSURE 

2.1. Definition of hoop stress 

By symmetry the three principal stresses in the shell will be the 

(i) circumferential or hoop stress 

(ii) longitudinal stress 

(iii) radial stress. 

Thin cylinder : 

If the ratio of thickness to internal diamer is less than about 1/20, then the hoop stress and 

longitudinal stress are constant over the thickness and the radial stress is small and can be 

neglected. 

2.2 Hoop stress or circumferential stress derivation 
 
 
 
 
 
 
 
 
 
 
 

 

σ 1 
Let d - internal diameter 

l - length of cylinder 

t - thickness 

p - pressure 

consider the equilibrium of a half cylinder of length L. 

section through a diameteral plane, σ 1 acts on an area 2tL and the resultant vertical pressure 

force is found from the projected area horizontal d x L 

Equating forces 

σ1x 2 x tL = P x d x L 

= σ = 
PD 

1
 2t 

hoop stress in a tensile stress acts circumferentially on the cylinder. 

Longitudinal stress  σ 2 Derivation 

 

Consider the equilibrium of a section cut by a transverse plane, σ 2 acts on an area π 2 , dt 

(d should be the main diameter) and pacts on a projected area of 
π 

d2 
equating the forces. 

4 

1) 

t 

P 

L 

d 
σ  



 
 
 
 
 
 

 

σ 1 

 

 
Equating the forces 
σ x dt = 

π 2 

Px d 
2 

4 
 

Whatever the actual shape of the end 

i.e. σ = 
Pd 

 

2
 4t 

In case of long cylinder or tubes this stress may be neglected. 

 
Thin spherical shell under internal pressure derivation 

Again the radial stress will be neglected and the circumferential or hoop stress will be neglected 

and by symmetry the two principal stresses are equal, in fact the stress in any tangential direction 

is equal to σ . 

 

 

σ 

d - internal diameter 
 
 
 
 

 
From above figure it is seen that 

σπ dt = P 
π 

d
2
 

4 

i.e. σ = 
Pd 

4 t 

Volumetric strain 

 

σ 1 
 
 
 

(σ 2) (σ 2) 

 
 

 
Hoop Strain 

 

s = 
1 

(σ – µσ ) 
 

1  
E 

1 2 

or s1 = 
Pd 

4t1E 
(2 – µ) 

Longitudinal Strain 

s = 
1 

(σ – µσ ) 
2 

E 
2 1 

t 

P 



 

 

Volumetric Strain on capacity 

The capacity of a cylinder 
π 

d 2 L 

4 

 

 

If the dimension is increased by δdandδL,thevolumetric strain 

 

= 
(d + δd)(L + δL) – d2

L 

d
2
L 

= 
[d

2
L + d2δL + 2δd.dL + 2δd.d.δL + δd

2
L + δd

2δLd
2
L] 

d
2
L 

= (d2δL + 2δd. dL) / d
2
L 

= 2.δd / d + δL / L 

= 2 x diameteralstrain + longitudinalstrain 

= 2 x hoop strain + longitudinal strain 

 

Change in volume = (2 s1
+ s2

) volume 

For spherical shell, volume strain = 3 x hoop strain 

Change in diameter = s1
.d 

Change in length = s2
. L 

Example – 1 

A gas cylinder of internal diameter 40mm is 5mm thick, if the tensile stress in the material is 

not to exceed 30 MPa, find the maximum pressure which can be allowed in the cylinder. 

Data given 

D = 40mm, t = 5m 

σ 1= 30MPa = 30 N/mm2 

Solution 

 

weknow,σ = 
Pd 

 

1 2t 

or, 30 = 
P x 40 

2 x 5 

=P = 7.5MPa 

 
Example – 2 

A cylindrical thin drum 80mm diameter and 4m long is made 10mm thick plates. If the drum 

is subjected to an internal pressure of 2.5MPa determine its changes is diameter and length. E = 

200GPa. 

Data given 

d = 80 mm 

L = 4m 

T = 10mm 

P = 2.5 N/mm2 

E = 200 x10
3
 N/ mm

2
 



 

 
Solution 

 

ε = 
Pd 

(2 – µ) 
1
 4tE 

 

ε1 = 
 

 δ 

2.5 x 800 
(2 – 0.25) 

4 x10x 200x 10
3
 

2.5 x 800
2
 

d = ε1 x d = 
4x 200 x10

3 
x1.75 

= 0.35mm (Ans) 

 
Change in length 

 

ε = 
Pd 

( 
1 

– µ) 
2
 2tE  2 

δL = ε2L 

= 
PdL 

( 
1 

– µ) 
2tE 2 

= 
2.5 x 800 x 4 x 10

3
 

4 x 10 x 200 x 10
3
 

= 0.5mm( Ans) 

 
 
 

 

( 
1 

– 0.25) 
2 

 
Example – 3 

A cylindrical vessel 2m long and 500mm dia with 10mm thick plates in subjected to an internal 

pressure of 3MPa, calculate the change in volume of the vessel. 

E= 200GPa, µ = 0.3 

Data given 

L = 2 x 103 mm 

d = 500 mm 

t = 10mm 

P = 3MPa 

E = 200 x 10
3
 N/ mm

2
 

 

s = 
Pd 

( 
1 

– µ) 
2
 2tE  2 

= 
3 x 500 

2 x 10 x 200 x 10
3
 

( 
1 

– 0.3) 
2 

= 0.075 x 10–3
 

V = 
π 

d
2
L = 

π 
x 500

2
 x 2 x 10

3
 

4 4 

= 392.2 x 10
6
 mm

3
 

Change in Volume 

= V (2 s 1- s 2) 

= 392.7 (2x.32x103 + .075 x 10-3) 

= 185 x 10-3mm 3 



σr 

 

 

σr  

 

 

 

A 

Fig 3.5 
σ AB .t 

σθ 

 

 

σ 

θ 

 

 
CHAPATER. 3.0 

TWO DIMENSION STRESS SYSTEMS 

3.1 Determination of normal stress, shear stress and resultant stress on oblique plane. 

In many instances, however, both direct and shear stresses are brought into play, and the 

resultants stress across any section will be neither normal nor tangential to the plane. 

If σr Is the resultants stress making an angle y with the normal to the plane on which of acts. 

C 

σ σ 
 

 

 

 
Fig 3.1 

 

φ= tan 
τ 

σ 

σr = 

Stress on oblique plane 

A B 

Fig 3.2 
 
 
 
 
 
 
 

 
C C 

 
 
 
 

 
A B B 

Fig 3.4 

Fig 3.3 
 

 
The problem is to find the stress acting on any plane AC at an angle θ to AB. This stress will 

not be normal to the plane, and may be resolved into two components σθ and τθ . 

As per Figure 3.4 show the stresses acting on the three planes of the triangular prism ABC. 

There can be no stress on the plane BC, which is a longitudinal plane of the bar, the stress τθ must 

be up the plane for equilibrium. 

Figure 3.5 shows the forces acting on the prism, taking a thickness t perpendicular the figure. 

The equations of equilibrium resolve in the direction of σθ. 

σθ.AC. t = σ AB. tC os θ 

= σ =σ (  AB 
)Cos θ 

AC 

= σ Cos 
2
 θ 

 

σ 

 

   

σ 



σθ   

 

σYCosθ 

θ 

θ 

 

 

Resolve in the direction τθ 

τθ.AC.t =σ AB.tSinθ 

 =σ( AB
)Sinθ 

AC 

θ = σCos
2
 .θSinθ 

 = 
1 
σSin2θ 

2 

r = 

 Cos
4θ+Cos

2θ.Sin 
2θ 

mσr =σCosθ 

It is seen that maximum shear stress is equal to one-half the applied stress and acts on 

planes at 45
0
 to it. 

Pure Shear 

As the figures will always be right-angled triangles there will be no loss of generality by 

assuming the hypotenuse to be of unit length. By making use of these specification it will be found 

that the area on which the stresses act are proportional to 1 (for AC), Sin θ (for BC) and Sin θ (for 

AB) and future figures will show the forces acting on such an element. 
 
 
 
 

 

Sin θ 

 

 

 

τCosθ 

Let tue act on a plane AB and there is an equal complementary shear stress on plane BC. 

The aim is to find σθ& τθ acting on AC ata angle θ to AB. 

Resolving in the direction of σθ 

σθx1=(τCosθ)Sinθ + (τSinθ).Cosθ 

= τSin2θ 

Resolving in the direction of τθ 

 

τθx1=(τSin θ)Sin θ– (τCosθ).Cosθ 

= – τCos 2θ(θ( 45) down toplane 

σ r = =τat 2θ to τ 
 
θ 

C 

Pure Normal stresses on give planes 

σX Sinθ 

 

 

A B 

 
Let the known stresses beσX on BC and σY on AB, then the forces on the element are 

proportional to those shown. 

  
  

  

σθ  

 
 

C 

2θ τ 

A 
 

B 



 

40S 

 
30Sin60 

0
 

600 

30Cos60 
0
 

mσ = σ Cos θ + σ  Sin θ   

θ   

mτ = 
1 

(σ – σ )Sin 2θ  
2 

Y X 

 

 

Resolving in the direction of σθ 
 

Resolving in the direction of τθ 

τθ =σ Y Cosθ Sin θ–σ X Sinθ Cosθ 

 
General two dimensional Stress system 

 
 
 

 

σX Sinθ 

 

 

 

A 
 

 

Resolving in the direction of σθ 

 
σθ = σY Cosθ Cosθ +σX  Sinθ Sinθ + τ Cosθ Sinθ + τ Sinθ Cosθ 

=σ (1+Cos
2
θ )+σ (1– Cos

2
θ )+τ 2θ 

Y 
2 

X 
2 

Sin 

= 
1 

(σ + σ ) + 
1 

(σ – σ ) τCos
2
θ+ τ Sin

2
θ 

2 
Y X 

2 
Y X 

Resolving in the direction of τθ 

τθ = σ Y Cos θSin θ– σ X Sinθ Cos θ 

– τCos θ Cosθ+ τSin θ Sin θ 

mτ = 
1 

(σ – σ )Sin 2θ– τ Cos2 θ 
θ 

2 
Y X 

Example – 1 

If the stress on two perpendicular planes through a point are 60 N/mm2 tension, 40 N/mm2 

compression and 30 N/mm2 shear find the stress components and resultant stress on a plane at 

600 to that of the tensile stresses. 

σθ in60 
0
 

 
 
 
 
 
 
 

 
30Cos60 

0
 

σθ   
C 

τ Sin θ 

 

τCosθ 
B 

σYCosθ 



 

   

+ 

θ 

+ 

 

 
Resolving 

 

σθ = 60 Cos60 
0
. Cos60

0
 – 40 Sin60 

0
 .Sin60

0
 + 30 Cos60

0
 Sin60

0
 + 30 Sin60

0
 Cos60

0
 

= 60 x 
1 

x 
1 

– 40 x  
3 

x 3 1 3 
30  x 30 x 3 

x 
1 

2 2 2 2 2 2 2 2 

=15 – 30 + 7.5 + 7.5 

 

 
and 

τθ = 60 Cos60 
0
. Sin60

0
 + 40 Sin60 

0
 .Cos60

0
 – 30 Cos60

0
 Cos60

0
 + 30 Sin60

0
 Sin60

0
 

=15 3 +10 3 – 7.5 + 22.5 

= 58.3 N/ mm
2
 

= σr = (112 + 58.3 2) = 59.3N/ mm
2
 

at angle to the 

y = tan –
1
 
58.3 

= 80
0
 15

0
 

11 
 

 
58.3 

(200 to the 60 N/mm2) 

σ r 
 

φ 
 

 
Principal Planes 

From equation 

τ = 
1 

(σ – σ )Sin 2θ– τCos2θ 
θ  2 

Y X 

There are values of 0 for which τθ is zero and the plane on which the shear component is 

zero are called principal planes. 

From equation above. 
 

tan 2 = 
 2τ  

(σ Y – σ X ) 

 

(when – τθ = 0) 

This gives two values of 2 θ differing by 1800 and hence two values of θdiffering by 900 i.e. the 

principle planes are two planes at right angles. 

 

 

2τ 

 

 

 
Sin2θ = 

Cos2θ =  

 
2τ 

 
σ Y – σ X 

2θ 

(σ Y– σ X) 

 

(σ – σ ) 
2
 + 4τ2

 
  

(σ – σ ) 
2
 + 4τ2

 
  



(σ – σ ) 
2
 + 4τ2

 
  

σ  
C 

σ 

τ Sin θ 

 

τCosθ 
B 

x y 

x y x y 

 

 
Principal Stresses 

The stresses on the principal planes will be pure normal (tension or compression) and their 
values are called the principal stresses. 

We know, 

σ = 
1

(σ + σ ) + 
1

(σ – σ ) x Cos2θ+ τSin2θ 
θ 2 

Y X 
2 

Y X 

Pr incipalstresses = 
1 

(σ – σ ) 
2
 

1 
x(σ + σ )  2 

Y X 

 

2 
Y X 

 
τ.2 τ 

 
1 

[(σ – σ 

 
 

 

 
) 

2+ 4τ2
 ] 

= 
1 

=(σ + σ )  2 
Y X 

 

2 
Y X 

= 
1 

x(σ +σ )  
 

2 
Y X 

 
Shorter method for principal stresses 

 
 

 

XSin θ 

 

 

A 
 

σy Cosθ 

Let AC be a principal plane and σ the principal stress acting on itσX , σy and τ are the known 
stress on planes BC and AB as before. 

Resolve in the direction of σX 

σSin θ=σX Sinθ+τCosθ 

or σ –σx =τ Cosθ ... (1) 

Resolve in the direction of σy 

σCos θ= σy Cos θ+ τSin θ 

or σ – σy = τ tan θ ....... (2) 

Multiply corresponding sides of equations (1) and (2) i.e. 

(σ– σ ) (σ– σ ) = τ
2
 

or σ
2
 –(σ + σ ) σ+ σ σ – τ

2
 = 0 

Solving 

ax
2
 +bx + c =1 

 
x = 

2a 

Here 
 

σ = 

or σ = 
1 

(σ + σ )  
1 

 

 
2 

(σ – σ )
2
 + 4τ

2
 

2 
x y 

2 
x y 

The values of 0 for the principal planes are of course found by substitution of the principal 

stresses values in equation (1) & (2). 

(σ – σ ) 
2
 + 4τ2

 
  

(σ – σ ) 
2
 + 4τ2

 
  

1 

2 
(σ –σ ) 

2
 + 4τ2

 
  

–1b  b
2
 – 4ca 

(σ σ )  (σ σ )
2
 – 4σ σ 4τ

2
 

x y x y x  y 



 

2 
[(σ – σ )2 + 4τ2 ] x y 

 

 

Maximum shear stress 
 
 
 

 
A 

 
 
 

 

σ1Sin θ 

 

σ2 C osθ 

Let AB and BC be the principal planes and σ 1 and σ 2 the principal stresses. 

Then resolve 

 

τθ =σ2 Cosθ. Sinθ – σ1 Sinθ.Cosθ 

= 
1 

(σ – σ )Sin2θ 
 

2 
2 1 

Hence the maximum shear stress occurs when 2 0= 900 i.e. on planes at 450 to the principal 

planes and its magnitude is 

τ = 
1 

(σ – σ ) 
max 

2 
2 1 

 

In words : The maximum shear stress is one-half the algebraic difference between the principal 

stresses. 

Example – 2 

At a section in abeam the tensile stress due to bending is 50 N/mm2 and there is a shear 

stress of 20 N/mm2. Determine from first principles the magnitude and direction of the principal 

stresses and calculate the maximum shear stress. 

Solution σ 
C 

50N/ mm
2
 x Sinθ 

 

 
 

 

 
Resolve in the direction AB : 

σSinθ= 50 Sin θ+ 20 Cosθ 

σ – 50 = 20 c ot θ ... (1) 

Resolve in the direction BC : 

σCos θ= 20 Sin θ....... (2) 

σ = 20 tan θ 

 

A 
θ
 

20N/ mm
2
 x Cosθ 

20N/ mm
2
 x Sin θ 

B 

Multiplying corresponding sides of equations (i) and (ii) 

σ(σ – 50) = 20
2
 

σ2
 – 50 σ – 400 = 0 

σ = 
50  10 (25 – 16) 

2 

= 
50  64 

= 57 or – 7 
2 

σθ 

 C 

 B 



A 

the third being zero. 

 

φ L N / 2 θ 

  

σ1 

σ2 

R / 

 

 
i.e. the principal stresses are 57 N/mm2 tension, 7 N/mm2 compression, 

tan θ = 
σ 

= 
57 

or 
–7 

20 20 20 

Giving 0=700 and 1600, being the directions of the principal planes. 

Max shear stress = 

= 
1 

(σ – σ ) 
 

2 
2 1 

= 
1 

[57 – (–7)] 
2 

= 32N / mm
2
 

and the planes of maximum shear are at 450 to be principle planes i.e. 0=250 and 1150. (Ans) 

Maximum shear stress using Mohr’s Circle 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The stress circle will be developed to find the stress components on any plane AC which 

makes an angle θ with AB. 

 
 
 
 

 
P M 

 
 
 
 
 

 
Construction 

Mark off PL = σ 1and PM = σ 2(positive direction to the right). It is shown here for σ 2 ) σ 1, 

but this is not a necessary condition. On LM as diameter describes a circle center O. 

Then the radius OL represents the plane of σ 1 (BC) and OM represents the plane of σ 2(AB) 

plane AC is obtained by rotating. AB through θ anticlockwise, and if OM on the stress circle is 

rotated through 2 θ in the same direction, the radius OR in obtained which will be shown to represent 

the plane AC. 

OR could equally will be obtained by rotating OL clockwise through 1800-2 θ , corresponding 

to rotating BC clockwise through 900- θ . 

σr  

 

σθ 

 

  

 

τθ 

1 

 

σ2 

σ/
θ 

σ/ 
 



 

2 θ 
 

  

1 2 θ 

θ θ 

= 
1 

 

 
Draw RN r to PM 

Then PN = PO + ON 

 

= 
1 

(σ + σ ) + 
1 

(σ – σ )Cos2θ 
  

2 
1 2 

2 
2 1 

 

=σ1 

(1– Cos2θ) 
+ σ 

2 
2 

(1+ Cos2θ) 
 

 

2 

=σ Sin
2
θ+ σ Cos

2
θ) = σ , the normalstress component on AC 

 

 

and RN = 
1 

(σ – σ )Sin2θ 
 

2 2 1 

= τθ,the shear stress component on AC 

Also the resul tan t stress 

=σr = = PR 

 

And its inclination to the normal of the plane is given φ= (RPN 

σθ is found to be a tensile stress and τθ is considered positive if R is above PM, 

The stresses on the plane AD, at right angles for AC, are obtained from the radius OR
/, at 

180
0
 to OR 

i.e.σ1
 =PN

1
, τ1

 =R
1
N

1
 

θ θ 

 

and τ =τ1 but of opposite type, tending to give an anticlockwise rotation. 

The maximum shear stress occurs when RN=OR , i.e. θ =450 and is equal in magnitude to 

OR (σ2 –σ1)The maximum value of φ is obtained when PR is a tangent to the stress circle. 
2 
Two particular cases which have previously been treated analytically will be dealt with by this 

method. 

1. Pure compression 

IF σ is the compressive stress the other principal stress is zero. 
 
 
 

 

σ 
L M 

 

A 

 

PL = σ numerically, measured to the left for compression, PM = 0 

 
H enc e, O R = 

1 
σ 

2 

σ θ = P N, C om pres siv e 

τ θ = P N, Po s itiv e 

M axim um s he ar stre ss = O R = 
1 

σ 
2 

o cc uring w he n θ = 45 
0
. 

  

σθ 

 C 

 B 



P 

R 

P/ 2 θ 

O N 

1 

2 

 

 
2. Principal stresses equal tension and compression 

 
 

 

σ 
L M 

 
A 

PM = σ to the right 

PL = σ to the left 

Here O coincides with P 

σθ = PN,is tensile for 

θbetween  450 ,compressive for 

θbetween450 and1350 

τθ = RN,whenθ= 450 

τθ reachmaximum=σ,on planes when the normal stress is zero (Pure shear) 

Example -3 

A piece of materials is subjected to two compressive stresses at right angles, their values 

being 40 N/mm2 and 60 N/mm2. Find the position of the plane across which the resultant stress in 

most inclined to the normal and determine the value of this resultant stress. 

Solution 

 
σ = 60N / mm

2
(Compressure) 

σ = 40N/ mm
2
(Compressure) 

In the figure, the angle θ is inclined to the plane of the 40 tons N/m2 compression. 
 
 

 
60 L 

 
A 

 
40 

In above figure PL =60, PM=40, The maximum angle φis obtained when PR is a tangent to 

the stress circle. 

 
OR = 10, PO = 50 

Then φ = Sin–1 
1 

=110 30/ 
5 

σr =PR =– (502 – 102 ) =– 49N / mm2 

2θ= 90 – φ 

θ= 39015/ 

which gives theplanerequired 

σθ 

 C 

 B 

σ 

σr 

 
C 

 
B 

R 

2 θ  

O M 



6 

 

N /  
2 θ 

  

R / 

= tan-1 

 

 
Example -4 

At a point in a piece of elastic material there are three mutually perpendicular planes on 

which the stresses are as follows : tensile stress 50 N/mm2, shear stress 40 N/mm2 on plane, 

compressive stress 35 N/mm2 and complementary shear stress 40 N/mm2 on the second plane, 

no stress on the third plane. Find (a) the principal stresses and the positions of the plane on which 

they act (b) the position of the planes on which there is no normal stress. 

Solution 

Mark off PN = 50, NR = 40 

PN/ = -35, N/ R/= -40 

Join RR/, Cutting NN/ at 0, Draw circle centre O, radius OR 
 
 
 
 
 

 
L M 

 
 
 

 

Then ON = 
1 

NN/ 
2 

= 42.5 

 

OR= 42.5
2
 + 40

2
 = 58.4 

PO =PN – ON = 7.5 

(a) The Principal stresses are 

PM = PO + OM = 6.5 N/mm
2
 (tensile) 

PL = OL - OP = 50.9 N/mm2 (compressure) 

 

or, 2θ 
 40  

= 430 20/ 

42.5 

 = 210 40/ 

 
(b) If there is no normal stress, then for that plane N and P coincides and 

 

2θ = 180 – Cos
/ 

2θ = 97
0
 24

/ 

7.5 
 

 

58.4 50 
40 

θ = 48
0
 42

/ 
to the principalplane 

 

 

21
0
 40

/ 

8
0
 20/ 

 
 
 
 

 
65.9 

50.9 

 
 

 

35  

40  



 
(3) 

 

 
CHAPTER 4.0 

SHEAR FORCE & BENDING MOMENT 

4.1 – Types of beam and load 

Beam 

A structural member which is acted upon by a system of external loads at right angles to its 

axis is known as beam. 

Types of Beam 

1. Cantilever beam 

2. Simply supported beam 

3. Over hanging beam 

4. Rigidity fixedor built in beams 

5. Contimous beam 
 

W 

(1) 
 

(3) 

 
 
 

 

(4) 

 

 

 
Types of load 

1. Concentrated or point load 

2. Uniformly distributed load 

3. Uniformly varying load 

(5) 

 

 

 

 

4.2. Concepts of share force and bending moment 

Shear force 

The shearing force at any section of beam represents the tendency for the portion of beam to 

one side of the section of slide or shear laterally relative to the other portion. 

 
A 

 
A 

R
2 

The resultant of the loads and reactions to the left of A is vertically upwards and the since the 

whole became is in equilibrium, the resultant of the forces to the right of AA must also be F acting 

down ward. F is called the shearing force. 

 
(1) 

 
(2) 

W 

(2) 

W W W 

W
1 

F W
2 

R
1 

W
3 



L 

x 

W 

F 

M BMD WL 

SFD 

W 

 

 
Definition 

The shearing force at any section of a beam is the algebraic sum of the lateral component of 

the forces on either side of the section. 

Shearing force will be considered positive when the resultant of the forces to the left is upwards 

or to the right in downward. 

 

A shear force diagram is one which shows the variation of shearing force along the length of 

the beam. 

Concepts of Bending Moment 

In a small manner it can be argued that if the moment about the section AA of the forces to the 

left is M clockwise then the moment of the forces to the right of AA must be anticlockwise. M is 

called the bending moment. 

 
A 

 
A 

R
2 

 
Definition 

The algebraic sum of the moments about the section of all the forces acting on other side of 

the section. 

Bending moment will be considered positive when the moment on the left of section is 

clockwise and on the right portion anticlockwise. This is referred as sagging the beam because 

concave upwards. Negative B.M is termed as hogging. A BMD is one which shows the variation of 

bending moment along the length of the beam. 

4.3 Shear force and bending moment diagram and its silent features. 

i. Illustration in cantilever beam 

ii. Illustration in simply supported beam 

iii. Illustration in overhang beam 

Carrying point load and u.d.L. 

Concentrated loads 

Example -1 

A cantilever of length L carries a concentrated load W at its free end, draw the SF & BM 

diagram. WL 

W
1 

W
2 

R
1 

W
3 



3 m 

 
 

 

 
 

 

 

 

 

 

 

 
Solution 

At a section a distance x from the free end, consider the forces to the left. 

Then F = – W, and in constant along the whole beam for all values of x. Taking moments 

about the section given M = - Wx 

A x = 0, M = 0, At –x = L, M = – WL 

At end from equilibrium condition the fixing moment is WL and reactions W. 

Example – 2 

A beam 10m long is simply supported at its ends and carries concentrated loads of 30 KN 

and 50 KN at distance of 3m from each and. Draw the SF & BM diagram. 
 
 
 

 

R
1 

R
2 

 
 
 
 
 
 
 
 

 
Solution 

First calculate R1 and R2 at support 

R1 x 10 = 30 x 7 + 50 x 3 

= R1 = 36KN 

and R2 = 30+50 – 36 = 44KN 

Let x be the distance of the section from the left hand end. 

Shearing force 

O < x < 3m, F= 36KN 

3 < x < 7, F= 36 -30 = 6 KN 

7 < x < 10, F = 36-30-50= -44 KN. 

Bending moment 

0 < X , 3 M = R1 X = 36 x KNM 

3 < X , 7, M = R1 X – 30 (X-3) = 6X +90 KNM 

Kx < 10 , 7, M = R1 X – 30 (X-3) – 50 (X-7) = 44 X + 440 KNM 

Principal values of M are 

at X = 3m, m = 108 KNM 

at x = 7m, M = 132 KNM 

at x = 10, M = 0. 
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CHAPTER 4 
 

 
Introduction 

 
BENDING MOMENT & SHEAR FORCE 

When any structure is loaded, stresses are induced in the various parts of the structure and 

in order to calculate the stresses, where the structure is supported at a number of points, the 

bending moments and shearing forces acting must also be calculated. 

Definitions 

Beam - Beam is structural member which is acted upon by a system of external loads at 

right angles to the axis. 

Bending - Bending implies deformation of a bar produced by loads perpendicular to its axis 

as well as force couples acting in a plane passing through the axis of the bar. 

Plane bending - If the plane of loading passes through one of the principal centroidal axes of 

the cross section of the beam, the bending is said to be plane. 

Point load - A point load or concentrated load is one which is considered to act at a point. 

Distributed load - A distributed load is one which is distributed or spread in some manner 

over the length of the beam. If the spread is uniform, it is said to be uniformly distributed load. If the 

spread is not at uniform rate, it is said to be non-uniformly distributed load. 

CLASSIFICATION OF BEAMS 

1. Cantilever – A cantilever is a beam whose one end is fixed and the other end free. Fig. 4.1 

shows a cantilever with a rigidity fixed into its support and the other end B free. The length between 

A & B is known as the length of cantilever. 
B 

A 

Cantilever 

Fig 4.1 

 
2. Simply supported beam – A simply supported beam is one whose ends freely rest on 

walls or columns or knife edges. 

 

A B 

 
Simply supported beam 

Fig. 4.2 

3. Over hanging beam – An overhanging beam is one in which the supports are not situated 

at the ends i.e. one or both the ends project beyond the supports. In Fig. 4.3 C & D are two supports 

and both the ends A and B of the beam are overhanging beyond the supports C & D respectively. 

W
1 W

2 W
3 

A B 

 
 
 

Fig. 4.3 

4. Fixed beam – A fixed beam is one whose both ends are rigidly fixed or built in into its 

supporting walls or columns. 
 
 

 
Fig. 4.4 

W
1 

W2 

 

Fixed beam 
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W
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5. Continuous beam – A continuous beam is one which has more than two supports. The 

supports at the extreme left and right are called the end supports and all the other supports, except 

the extreme, are called intermediate supports. 

 

 

A B 

 
Continuous beam 

Fig. 4.5 

 
SHEAR FORCE 

In general if we have to calculate the shear force at a section the following procedure may be 

adopted. 

(i) Consider the left or the right part of the section. 

(ii) Add the forces normal to the member on one of the parts. 

If the right part of the section is chosen, a force on the right part acting downwards is positive 

while a force on the right part acting upwards is negative. For instance, if the shear force at a 

section x of a beam is required and if the right part x B be considered the forces P & θ are positive 

while the force R is negative. S.F. at X = P+ Q- R 
 

P Q 

 

X B 

Section 

 
 

 
A 

 
 

 
Fig.4.6 

W
1 

W2 

 
 

 
X 

Section 

If the left part of the section be chosen, a force on the left part acting upwards is positive and 

a force on the left part downwards is negative. For instance, if the shear force at X of a beam is 

required and if X A is the left part, the force Q is positive while the forces W1& W2 are negative. 

 
m S.Fat X =Q - W1 - W2 

BENDING MOMENT 

To find the bending moment at a section of a beam the following procedure may be adopted. 

(i) Consider the left or right part of the section. 

(ii) Remove all restraints and all forces on the part selected 

(iii) Now introduce each force or reacting element one at a time and find its effect at the 

section (i.e. find whether the moment produces a hogging or sagging effect at the section). Treat 

sagging moments as positive and hogging moments as negative. 

Note that the moment due to every downward force is negative and moment due to every 

upward force is positive. 

Shear force and bending moment diagrams. 
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Fig.4.8 
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Fig.4.9 
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S.F. Diagram 
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A.  CANTILEVER 

(i) Cantilever of length L carrying a concentrated load W at the free end. 

W 

A B 
L W 

 
A B 

S.F. Diagram 

A B 

 
WL 

Fig.4.7 

Fig. 4.7 shows a cantilever AB fixed at A and free at B and Carrying the load W at the free and B. 

Consider a section x at a distance of x from the free end. 

S.F at X = S z = +W 

B.M at X = M z = -W z 

Hence, we find that the S.F. is constant at all sections of the member between A & B. But the 

B. M at any section is proportional to the distance of the section from the free end. 
 

 
 

 
At z = 0 i.e. at B, B.M = 0 

At z = L i.e. at A, B.M = WL 

Fig. 4.7 shows the S.F. and B.M diagrams. 
(ii) Cantilever of length L carrying a uniformly distributed load of W per unit run over the whole 

length. 
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(WL+W) 

W/ unit run 

B 
X 

z 

 

 
W 

 

A X B 
S.F. Diagram 

X B 
A 

 

WL2 

( 
2 

 

+ WL) 

Fig 4.8 shows a cantilever AB fixed at A and free at B carrying a uniformly distributed load of 

W per unit run over the whole span. 

X 
A 

B 

WL2 

2 



W/ unit run 
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L 

Wa 

D B 

(--) 
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2 
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Consider any section X distant z from the end B. 

. 
χ χ2 

S.F at X= S z =+W z , B.M at X = M z = -W z 2 
= - W. 

2 

Hence we find that the variation of the shear force is according to a liner law while the variation 
of the bending moment is according to a parabolic Law. 

At z = 0, S z =0 M z =0 
 

 
At z = L, S z = +WL, M z = 

WL2 

2 

(iii) Cantilever of length L carrying a uniformly distributed load of W per unit run over the whole 

length and a concentrated load W at the free end. 

 

A B 

 
 

 
Wa 

 

 

A D B 
 

A 
 
 
 
 

Fig.4.10 

Fig. 4.10 Shows a cantilever AB fixed at A and free at B and carrying the load system mentioned 

above. Consider any section X distant z from the end B. The S.F and the B.M at the section X are 

respectively given by 

At z = 0, S z =+W, M z = –( 
Wz2 

+ WL) 

At z = 0, S z =+W, M z =0 

At z = L, S z = +(WL+W), M z = +( 
WL2 

+ WL) 

S.F. varies following a liner law while B.M varies following a parabolic Law. 

(iv) cantilever of length L carrying a uniformly distributed load of W per unit run for a distance 

a from the free end. 

Fig. 4.10 shows a cantilever AB fixed at A and free at B and carrying the load system mentioned 

above. 

Consider any section between D and B distant z from the free end B. 

 

S.F and B.M at the section are given by S z =+W z , M z = – 
Wz2 

The above relations hold good for all values of x between z =0 and z =a (i.e. between B & D) 

Hence for this range the S.F. varies following a linear Law while the B.M varies following a 

parabolic Law. 

At z = 0, S z =0 M z =0 



2 

2 

 

 

At z = a, S z = +Wa and M z = – 
W a2 

Now consider any section between D & A, distant z from the end B. 

The S.F & B.M at this section are given by 

S z = +Wa and M z = –Wa(z – 
a

) 

Hence between A & D, S.F. is constant at +Wa b but the B.M varies according to a linear law. 

At z = a, M z = -Wa (a– 
a
)= – 

W a
2 

 
 

2 2 

At z = L, M z = -Wa (L– 
a
) 

2 

Problem 

Fig. shows a cantilever subjected to a system of loads. Draw S.F & B.M diagrams. 

Solution – At any section between D & E, distant x from E. 

S.F = S z +500kg 400 kg 300 kg 800 kg 500 kg 

B.M = M z = -500 z 

At z = 0, M z = 0 

0.5m 
A 

0.5m 

B 

0.5m 

C D 

2m 

0.5m 

E 

At z = 0.5m, M z = -500 x 0.5 = -250kg.m 

 
At any section between C &D, distant z from E, 

2000 kg 
1600 kg  

1300 kg 

 

 
500 kg 

A 

S.F = S z = +500+800=+1300Kg 

B.M = M z = -500x – 800 (x-0.5) = -1300x + 400 
A 

At z = 0.5, M z = -1300 x 0.5+400 = -250Kg.m 

At z = 1M, M z = -1300 + 400 = -900 Kg.m 

B C D E 

S.F. Diagram 

B C D E 

 
250 kg 

1700 kg 900 kg 

 
At any section between B & E, distant x from E 

S.F = S z = +500 + 800 +300 = 1600Kg 

2700 kg 
B.M Diagram 

 
Fig. 4.11 

B.M = M z = -500x – 800(x-0.5) – 300 (x-1) Kg. M = -1600x + 700 Kg.m 

At z = 1m, M z = -1600 + 700 = -900 Kg.m 

At z = 1.5m, M z = -1600 x 1.5 + 700 = -1700 Kg.m 

 
At any section between A & B distant x from E. 

S.F = S z = +500+800+300+400 = 2000Kg 

B.M = M z = -500x -800(x-0.5)-300 (x-1) – 400 (x-1.5) = -200x + 1300Kg.m 

At z = 1.5m, M z = -2000 x 1.5 + 1300 = -1700Kg. m 

At z = 2m, M z = -2000 x 2 + 1300 = -2700 Kg.m 

Beams freely supported at the two ends. 
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D 

A 

S.F. Diagram 

R  = 

(i) 
Simply supported beam of span L carrying a concentrated load at mid 

 
Fig 4.12 shows a beam AB simply supported at the ends A & B. Let the span of the beam be 

L and let the beam carry a concentrated load W at mid span. 

Since the load is symmetrically placed on the span, reaction on the span, reaction at each 

w W 
support = 

2 
A B 

mR =R = 
w 

 

 

A B 2 w 
w a 2 

R = 
w 

b 2 
For any section between A & C S.F=Sz=+ 

2 

For any section between C & B SF = S.F=Sz=– 
w 

2 

At the section C the S.F changes from + 
w 

to – 
w 

2 2 

At any section between A & C distant z from the end A, 
the bending moment is given by, 

 

 

A B 

 

S.F. Diagram 
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WL C 

M z = + 
w 

z(saggingmoment) 
2 

At z = 0, M z = 0 
At z = 

L 
, M = 

WL A B 

2 
a 

4 
B.M Diagram 

Hence the B.M increased uniformly from zero at A to 
WL 

4 
at C. 

Fig. 4.12 

Similarly the B.M decreases uniformly from 
WL 

at C to zero at B. Maximum bending moment 
4 

occurs at mid span i.e. at C where the S.F changes its sign. 

(ii) Simply supported beam carrying a concentrated load placed eccentrically on the span. 

Fig. 4.13 shows a simply supported beam AB of span L carrying a concentrated load W at D 
eccentrically on the span. 

Let AD = a & DB = b W 

Let Ra & Rb be the vertical reactions at A & B 
A B 

For equilibrium of the beam, 

R = 
Wb L 

R = 
Wa 

Taking moments of the forces on the beam about A, a L b L 

we have W b 

 

Rb = Wa B 

mRb 

mRb 

mRa 

= 
Wa 

L 

=W – 
Wa 

= 
W(L – a) 

L L 

= 
Wb 

L 

W a 
 

 

Wab 
L 

 
 

 
A C B 

Since a+b = L for any section between A and D 

the shear force = S z = Va = + 
Wb 

L 

B.M. Diagram 

Fig. 4.13 
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S.F. Diagram 
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4KN 

 

 

For any section between D & B, the shear force = S z = –Rb 
+ 

W b 

L 

At any section between A & D distant x from A, the bending moment is given by 

M z = + Wb 
z(sagging) 

L 

At z = 0, M z = 0 

At z = 0, M z = 
Wab 

L 

Hence the B.M increases uniformly from zero at the left end A to 
W ab 

at D. Similarly the B.M 
L 

will decrease uniformly from W ab at D to zero at the right end B. 
L 

It may be observed from the S.F and B.M diagrams that the maximum B.M occurs at D 

where the S.F. changes its sign. 

(iii) Simply supported beam carrying a 

number of concentrated loads. 

4KN 10KN 7KN 

1.5m 2.5m 2m 2m 
A B 

Fig. 4.14 shows a simply supported beam 

AB of span 8 meters carrying concentrated loads 

of 4KN, 10 KN & 7 KN at distances of 1.5 meters, 

4 meters & 6 meters from the left support. 

S.F between C & D = + 10 – 4 = +6KN 

S.F between D & E = +10 – 4 – 10 = – 4KN 

 
R 

a 

10KN 

 
A 

C 

=10KN 

 

 

 

D E 

8m 
R

b 

 

= 11KN 
 
 

 
B 

S.F between E & B = +10 – 4 – 10 – 7 = –11KN 

B.M at A = 0 

 

 
15KNm 

 

 
 

30KNm 

11KN 11KN 

B.M at C = +10 x 1.5 = +15KNm (Sagging) 

B.M at D = +10 x 4 – 4 x 2.5 = +30 KNm 

 

 

A C D 

22KNm 

E B 

(Sagging) 

B.M at E = +11 x 2 = +22 KNM (Sagging) 

It may be observed from the S.F & B.M 

diagrams that the maximum B.M occurs at D where 

the S.F changes its sign. 

(iv) Simply supported beam carrying a 

uniformly distributed load of W per unit run over 

the whole span. 

Fig. 4.15 shows a simply supported beam 

AB of span L carrying a uniformly distributed load 

W per unit run over the whole span. Let Ra & Rb 

be the vertical reactions at the supports A & B 

respectively. 

Since the loading is symmetrical on the span, 
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R
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2 

B.M. Diagram 

Fig. 4.14 
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R
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2 

each vertical reaction equals half the total load on 

the span. 

A C 

Fig. 4.15 
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B.M. Diagram 
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S.F. Diagram 
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mR =R = 

WL 

a b 2 

Consider any section X distant z from the left end A. 

S.F & B.M at the section X are given by 

 

Sz= +Ra 
– Wz= + 

WL 
– Wz 

2 
Wz

2
 WL Wz

2
 

Mz=Raz– 
2 

= z–  
2 2 

mMz= + 
W 

z(L – z) 
2 

Atz=0,Sz=+ 
WL

,Mz= 0 
2 

Atz=L,Sz=+ 
WL 

– WL =– 
WL

,Mz=0 
2 2 

L WL WL WL L L WL
2
 

Atz=  ,Sz=+ – = 0 & Mz=+ . (L –  ) =+ 
2 2 2 2 2 2 8 

 

The S.F diagram is a straight line. The S.F uniformly changes from + 
WL 

At A to – 
WL 

At B & 
2 2 

obviously that S.F at Mid span is zero. 

The B.M diagram is a parabola. The B.M increases according to a parabolic law from zero at 

A to + 
WL2 

2 
at the mid span C and from this value the B.M decreases to zero at B following the 

parabolic law. 

(v) Beam with overhanging at one end and carrying a uniformly distributed load over the 

whole length. 

Fig. 4.16 shows a simply supported beam ABC with supports at A & B, 6 meters apart with on 

over hang BC 2 meters long. 

Let Ra & R
b 
be the vertical reactions at A & B. For the equilibrium of the beam, taking moments 

about A, 

we have Ra x 6 = 1.5 x 8 x 4 

mRb = 8 tones 

mRa = 1.5 x 8 -8 = 4 tones 

S.F at the left end = +4t 

S.F just on the left hand side of B = +4-1.5 x 6 = -5t 

S.F. just on the right hand side of B = +1.5 x 2 = 3t 

S.F at C = 0 

Let S.F be zero at z meters from A, 

equating the S.F to zero, 
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S.F. Diagram 5t 
5.33tm 

we get S z = 4-1.5 z =0 mz = 
8 

= 2.67m 

3 

B.M. Diagram 

Fig. 4.16 

B 
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B.M at A = 0, At any section in AB distant x from A the B.M is given by 

 

M z = 4 z – 1.5 
X

2 

2 

Hence the B.M diagram is parabolic 

 

B.Mat z= 
8 

MB M = 4 x 
8 

– 
1.5 

(
8 
)2 = 

16 
+ 5.33tm 

     

3 max 
3 2 3 3 

B.Mat z= 6m i.e. at B = 4 x 6 – 
1.5 

x6
2
 = – 3tm 

2 
 

Section at which the B.M is Zero 
 

Since at z=
8 

3 

 
the B.M is +5.33 tm & at x = 6m the B.M is -3tm there must be a section where 

the B.M is zero. This section can be determined by equating the general expression for B.M to 

zero. i.e. by the equation 

z2 

4z –1.5 = 0 
2 

mz =(4 – 0.75z) = 0 

mz = 0 &mz = 
16 

= 5.33m 
3 

Let the B.M be zero at O, AO = 
16 

m 

3 

The point O where the B.M is zero called the point of contra flexure or point of inflexion. 

For all sections from A to O the B.M is of the sagging type while for all sections between O & 

C the B.M is of the hogging type. 

(vi) A beam of length (L+2a) has supports L apart with an overhang a on each side. The beam 

carries a concentrated load W at each end. Draw S.F & B.M diagram. 

Let DABC be the beam of length (L+2a). Let the supports be at A & B, 

so that DA= BC =a 
W W 

mAB = L 

Each vertical reaction = W 

mRa =Rb = W 

S.F. at any section between D & A = -W 

S.F. at any section between B & C = +W 

S.F. at any section between A & B = O 

 

Ra =W 

 

 
D 

 

RB =W 

B.M at D = O B.M at A = -Wa 

At any section in AB distant x from D the B.M is given by 
D 

Mx = -Wx + W(x-a) = -Wa 

B.M at B = -Wa B.M at C = O 

The B.M throughout the length is of the hogging type. 

S.F. Diagram 

A B 
C 

 
wa wa 

B.M. Diagram 

Fig. 4.17 
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CHAPTER 5 

THEORY OF SIMPLE BENDING 

When a beam is loaded it is bent and subjected to bending moments. Consequently, 

longitudinal or bending stresses are induced in cross section. 

Assumptions in ‘Theory of bending’ 

1. The material of the beam is perfectly homogenous 

2. The stress induced is proportional to the strain & the stress should not exceed the elastic 

limit. 

3. The value of modules of elasticity (E) is same, for the fibres of the beam under compression 

or tension. 

4. The transverse section of the beam, which is plane before bending, remains plane after 

bending. 

5. There is no resultant pull or push on the cross section of the beam 

6. The loads are applied in the plane of bending. 

7. The transverse section of the beam is symmetrical about a line passing through the 

centre of gravity in the plane of bending. 

8. The radius of curvature of the beam before bending is very large in comparison to the 

transverse dimensions. 

As a result of a bending moment or couple, a length of beam will take up a curved shape and 

a very short length may be treated as a part of the arc of circle. It follows that at the outor radii the 

material will be in tension and at the inner radii in compression and at some radius there will be no 

stress. This layer of the material is the neutral layer or neutral axis. 

Fig 5.1 shows a longitudinal section of a beam, the neutral layer (axis) N.A. being bent to form 

an arc of a circle of radius R. The neutral layer is then, before bending, the length pq, which after 

bending becomes p/q/. 

Consider some layer rs at a distance Y from pq which after bending becomes r/s/. Let p/q/ 

subtend an angle αat the centre of curvature. 

mp
/
q

/
 =R α and r 

/
s 

/
 =(R– y)α 

Initially the parallel layers would have equal lengths, so that Pq = rs and since there is no 

stress at the neutral layer, then there is no strain. 

mp
/
q

/
 = pq 

 

Now the strain in rs = 

 
p

/
q

/
 – r /s/

 

– /  / 

but rs = p q = p q 
rs 

 
N A 

mStrain = 
rs 

 

B u t p / q / = R α and r / s / = (R – Y )α 

S tra in 
R α – (R – Y )α 

= 
Y 

R α R 

O 

R 
α 

y 

Fig. 5.1 
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Now if the stress in rs = σ & young’s modulus = E 

 

then strain 
σ 

= 
Y 

or 
σ 

= 
E 

. . . (5.1) 
E R Y R 

If a transverse section of the beam is now considered (Fig. 5.2) let a strip of area δ a, lie at a 

distance Y from the neutral axis. 

Then, the normal force on this area (δa) = 
E 

y δa 

R 

 

Now the moment of this force about the neutral axis is =
E

yδaxyor 
E

y2 δa 

R R 
 

This is the resisting moment of the material caused by the stress produced and the total 

resisting moment is = Σ
E 

y2 δa or 
E 

Σy2 δa 

R R 

 

And = Σy
2
 δa B the second moment of area about the neutral axis, I . 

 

mRe sisting moment M 
E 

x I 
R 

 
But since the resisting moment balances the applied bending moment, 

 

mM 
E 

xI or 
M 

= 
E 

R I R 

But 
E σ M σ E 

 =  m  =  = 
R Y I Y R 

 
Where, 

. . .(5.2) 

 
N  A 

 

M = moment of resistance 

I = Moment of inertia of the section about neutral axis (N.A.) 

E = Yong’s modulus of elasticity 

R = Radius of Curvature of N.A 

σ = Bending stress 

The above equation is known as the ‘Bending equation’. 

Position of Neutral Axis 

 
 
 

 
Fig. 5.2 

Consider the cross-section of a beam (Fig. 5.2), there will be no resultant force on the section 

for condition of equilibrium. 

The force acting on a small area δa at a distance ‘y’ from the neutral axis is given by 

 

SF = σ.δa = 
E 

Y.δa 
R 



d 

 

 

 
d 

 

 

 

 

 
b 

 

 
Or the total force normal to the section, 

 

F = 
E 

Σ Y. δa 
R 

m For zero resultant force, ΣY.δa =0 

Now Σ Y.δa is the moment of the sectional area about the neutral axis and since this moment 

is zero, the axis must pass through the centre of area. 

Hence the neutral axis or neutral layer, passes through the centre of area. 

Section Modules 

Referring to the bending equation, M 
= 

σ 
, σ = 

MY 

I Y I 

or σ = 
M 

where Z = sec tion modulus = 
I 

Z Y 

The section modulus is usually quoted for all standard sections and practically is of greater 
use. The strength of the beam section depends mainly on the section modulus. 

The section modulii of rectangular and circular sections are calculated below. 

(i) Rectangular section 

Fig. 5.3 shows a rectangular section of width b & depth d. 

Let the horizontal centroidal axis be neutral axis. 

 

Section modulus Z = 

 

= 

Moment of inertia about theneutral axis 
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and Y = 
d 

  

 

 

m Z= 

I2 

bd3 
 

 

 I2  
d 

2 

 

 

= 
bd

2
 

6 

max 
2 N A 

 
 
 
 
 
 

 

b 
Moment of resis tance, M = σZ =σ 
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Fig. 5.3 
 

 
(ii) Hollow rectangular section 

Refer to Fig. 5.4. 

x  bd  ...(5.4) 
6 

Moment of inertia of the section about the neutral axis. 
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Fig. 5.4 

Moment of resis tance, M = σZ = σ x  6D 
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(iii) Circular section 

Refer to Fig 5.5 

Moment of inertia of the section about the neutral axis. 
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4
 d 

I= 
64 

, Ymax = 
2 

m Section modulus = Z = 

 
πd

4
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Y
max 

 

 

N A 

 πd
3
 

=  64 = 
d 

2 

...(5.6) 
32 

d 
πd

3
 

Moment of resis tan ce, M = σZ =σ x 
32 

 

 

(iv) Hollow circular section 

Refer to Fig 5.6 

Moment of inertia of the section about the neutral axis. 

Fig. 5.5 
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D 32 L D  

Moment of resis tance, M = σZ =σ x 
π (D4 – d4 ) 
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Example 

A 250mm (depth) x 150mm (width) rectangular beam is subjected to maximum bending 

moment of 750 KNm determine. 

(i) The maximum stress in the beam. 

(ii) If the value of E for the beam material is 200 GN/m2. 

Find out the radius of curvature for that portion of the beam where the bending is maximum. 

(iii) The value of the longitudinal stress at a distance of 65mm from the top surface of the 

beam. 

Solution : Refer to Fig 5.7 

Width of the beam = b = 150 mm = 0.15m 

Depth of the beam = d = 250 mm = 0.25m 

Maximum bending moment M = 750KN.m 

Young’s modulus of elasticity, E = 200 GN/m2…. 

65mm 

 
60mm 

N 

 
 
 
 
 
 
 

 
150mm 

 

 
   A 

250mm 
 
 

 
Fig. 5.7 



 

 
(i) Maximum stress in the beam : 

bd4 0.15 x 0.253 4 

Moment of inertia I= = = 0.0001953m 
12 12 

Distan ce of the neutralaxis(N.A) from top surface of the beam 

Y = 
d 

= 
0.25 

= 0.125m 
2 2 

usin g therelation 
M 

= 
σ 

, 
I Y 

M.Y 750 x103 x 0.125 
weget σ = = 

I 0.0001953 

= 4.8 x108 N/ mm2 = 480MN / m2 

Hence the max imum stress in the beam = 480MN / m2 (Ans) 
 

 

(ii) Radius of curvature, R: 
 

Using the relation M 
= 

E 

 

 
EI  200 x10

9
 x 0.0001953 

  ,R =  = 
I R M 750 x10

3
 

= 52.08m (Ans) 

(iii) Longitudinal stress at a distance of 65mm from top surface of the beam, using the 

relation 
M  

= 
σ 

= 
σ 1 

I Y Y 1 

 

MY 750 x10
3
 x(60x10–3

 ) 
we get σ1=  

1
 = 

I 0.0001953 

= 230.4MN/m2 (Ans) 

x10 –
6
 = MN/ m

2
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CHAPTER 6.0 

STRUT 

A structural member subjected to an axial compressive force is called a strut. 

Column 

It is a vertical strut used in building or frame. 

Axial load on column 

The column fails by compressive stress. 

The load, the least value of P which will cause the column to buckle, and it is called the Euler 

or crippling load. 

The column in actual practice is subjected to following end conditions. 

(1) Both ends hinged 

(2) Both ends fixed 

(3) One end is fixed and other end hinged. 

(4) One end is fixed and other end free. 

6.2 Eccentric load in columns 

Eccentric load 

A load whose line of action does not coincide with the axis of a column is called eccentric 

load. P P 
 
 
 
 
 
 
 
 

 

Direct stresses, bending stresses, maximum & minimum stresses. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

σ min σ max 
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Consider the above column ABCD subjected to an eccentric load about one axis (Y-Y-axis) 

 
 

 
Let P = Load acting on the column 

e = Eccentricity of the load 

b= Width of the column section 

d = Thickness of the column 

Now Are of the section = bd 

d.b 
3
 

Moment of Inertia, I =  
12 

 I 

 

 
d.b

3
 

 

 db
2
 

Modulus of section, Z =  =  12 = 
 

y b
12 

12 

Direct stress, σ =
P 

 

0  A 

Moment due to load, M = p.e 

Bending stress at any point of column section at a distance y from y-y-axis 

σ =
M

y=
M 

b
 I Z 

or 

at y= 
b 

2 

M. 
b 

σ = 2 = 
6M 

= 
6p.e 

= 
6p.e 

   

b
 db

3
 db

3
 db

2
 A.b 

2 

Total stress = direct stress + bending stress 

= 
P 

 
M 

= 
P 

 
6P.e 

A Z A Ab 

Problem 

A rectangular column 200mm wide and 150mm thick is carrying a vertical load of 120KN at 

an eccentricity of 50mm in a plane bisecting the thickness determine the maximum and minimum 

intensities of stress in the section. 

Solution 

120KN 

 
 
 
 

 

Elevation 
200 

A B 
e 

 
 
 

 
150mm 

 
C D 

 

 
Given 

σ min σ max 

b = 200mm, d = 150mm, p = 120KN, e = 50 mm 

 m m 

Plan 
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Maximum stress 

A = b x d = 200 x 150 = 30,000 mm2 

σ = 
P (

1+ 
6e  

max 
A 

 
b 

 
  

= 
120 x10

3
 ( 

 
6 x 50  

30,000 1+ 200 
 

  

=10N / mm
2
 =10MPa (Ans) 

Minimum Stress 

σ = 
P (

1– 
6e  

min 
A 

 
b 

 
  

= 
120 x10

3
 ( 

 
6 x 50  

30,000 1– 200 
 

  

= – 2MPa (tension) 

6.4 Buckling load computation 

(1) Columns with both ends hinged 
 
 

 
L 

 
 
 

 
(2) Columns with one end fixed and the other free 

 
 
 
 

 

Cohers 
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E – Youngs modulus 

I = Moment of Inertia about YY-axis. 

(3) Columns with both ends fixed. 

 
 
 
 

 

A M6 

 

 

L 
 

 

H 

(4) Columns with one end fixed and the other hinged. A 
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CHAPATER 7.0 
 

 
7.1 Assumption of pure torsion 

 
TORSION 

If a shaft is acted upon by a pure torque T about its polar axis, shear stress will be set up in 

directions perpendicular to the radius on all transverse sections. This is called as the shaft under 

torsion. 

Following assumptions are made. 

1. The material of the shaft is uniform through out 

2. The twist along the shaft is uniform. 

3. Normal cross sections of the shaft, which were plane and circular before the twist, 

remains plane and circular even after the twist. 

4. All diameters of the normal cross section which were straight before the twist, remain 

straights with their magnitude unchanged, after the twist. 

7.2 The torsion equation for solid shaft. 

These above assumption is justified by the symmetry of the section. 
 
 
 
 

 
O 

 
 

 

L d 

 

The left hand figure shows the shear strain φof elements at a distance r from the axis ( φis 

constant far constant T), so that a line originally OA twists to OB, and 3ACB =θ the relative angle of 

twist of cross sections a distance L apart. 

 

Arc AB =rθ=Lφ(approx) 

But φ= 
τ 

, where G– modulus of rigidity 
G 

or φ= 
r .θ 

L 

r .θ 
= 

τ 

e G 

or 
τ 
= 

G.θ 

r L 

 
The torque can be equated to the sum of the moments of the tangential stresses on the 

element 2πrdr; 

r 
A 

B 
 



 
 

 

i.e. T =  τ(2πrdr)r 

or,T = 
Gθ

.J 
L 

Where Jpolar moment of inertial 

T 
= 

Gθ 

J L 

combing 
T 

= 
τ 

= 
Gθ 

J r L 
πD

4
 

for asolid shaft J= 
32 

and the max stress 

τ = 
16T 

at r = 
D 

  

max πD3 2 

for a holloro shaft 

J= 
π 

(D
4
 – d4

 ) 
32 

and τ = 
16.D.T 

at r = 
D 

  

max 
π(D

4
 – d4

 ) 2 

Torsional stiffness,K = 
T 

= 
GJ 

  

θ L 

 
7.3 Comparison between solid and hollow shaft subjected to pure torsion. 

Example 

Compare the weights of equal lengths of hollow and solid shaft to transmit a given torque for 

the same maximum shear stress if the inside diameter is 
2 

3 
of the outside. 

Solution 
 

 
T 2J πD

3
 

Nro, 
τ 

= 
D 

= 
16 

for solidshaft 

and 
T π(D 

4
 – d4

 ) 
=  1

  for hollow shaft 
τ 16D 

T πD 
3
 ( ( 2 

4  
or  =  1

  1–     
τ 16   3   

= 
65 x πD1

3
 

81x16 

Equatingthese two shaft 

πD
3
 
= 

65 x πD1
3
 

16 81x16 

D1 =D.3 =1.075D 

 

 
D1 =1.075D 

81/ 65 
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Ratio of weights of equal lengths 

 

= (D 2 – d2 ) / D2 

= 2 ( 4  
(D1 / d) 1–   

  

=
( 5  

2 x1.0752 

  

= 0.642 

 
Problem 

A circular shaft of 50mm diameter is required to transmit torque from one shaft to another 

find the safe torque, which the shaft can transmit. If the τ = 40MPa 

Solution 
 

 

D = 50mm,τmax = 40MPa 

weknow 

T = 
π 

x τD
3
 

16 

= 
π 

x 40 x 50
3
 

16 

= 0.982 x10
6
N – mm 

= 0.982KN – m 


